Skip to main content
Log in

Predicting minimum area requirements of butterflies using life-history traits

  • Original Paper
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

The minimum area requirement (MAR) of a species is the amount of functional habitat necessary for population persistence. The accurate measurement of MAR in the field usually requires long and precise investigations of all resources used by the target organism. Here we tested if MAR could be predicted by body size and species-specific life-history traits. Using values of MAR collected on European butterflies, we related MAR to 17 life-history traits plus wing size (a correlate of body size). We show that four life-history traits and wing size were significantly related with MAR in European butterflies. Compared to a model with wing size only, the inclusion of these four traits (myrmecophily, thermal tolerance, mate searching strategy, and ovigeny) more than doubled the power of the predictions of MAR. Our study provides a first step towards a predictive theory of species spatial requirements, with strong applications in conservation biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Anderson DR, Burnham KP, White GC (1994) AIC model selection in overdispersed capture-recapture data. Ecology 75:1780–1793

    Article  Google Scholar 

  • Baguette M, Schtickzelle N (2006) Negative relationship between dispersal distances and demography in butterfly metapopulations. Ecology 87:648–654

    Article  PubMed  Google Scholar 

  • Barton K (2012) MuMIn: multi-model inference R package version 166. http://CRANR-projectorg/package=MuMIn

  • Biedermann R (2003) Body size and area-incidence relationships: is there a general pattern? Glob Ecol Biogeogr 12:381–387

    Article  Google Scholar 

  • Bink FA (1992) Ecologische Atlas van de Dagvlinders van Noord-West Europa. Schuyt, Co., Haarlem

    Google Scholar 

  • Blake JG (1983) Trophic structure of bird communities in forest patches in east-central Illinois. Wilson Bull 95:416–430

    Google Scholar 

  • Bolnick DI, Svanbäck R, Fordyce JA, Yang LH, Davis JM, Hulsey CD, Forister MI (2003) The ecology of individuals: incidence and implications of individual specialization. Am Nat 161:1–28

    Article  PubMed  Google Scholar 

  • Bowman J (2003) Is dispersal distance of birds proportional to territory size? Can J Zool 81:195–202

    Google Scholar 

  • Bowman J, Jaeger JAG, Fahrig L (2002) Dispersal distance of mammals is proportional to home range size. Ecology 83:2049–2055

    Google Scholar 

  • Brown JH, Marquet PA, Taper ML (1993) Evolution of body size: consequences on an energetic definition of fitness. Am Nat 142:573–584

    Article  PubMed  CAS  Google Scholar 

  • Calder WA (1996) Size, function and life history. Dover, New York

    Google Scholar 

  • Cizek L, Fric Z, Konvicka M (2006) Host plant defences and voltinism in European butterflies. Ecol Entomol 31:337–344

    Article  Google Scholar 

  • Dennis R, Shreeve T, Van Dyck H (2003) Towards a resource-based concept for habitat: a butterfly biology viewpoint. Oikos 102:417–426

    Article  Google Scholar 

  • Fahrig L (2001) How much habitat is enough? Biol Conserv 100:65–74

    Article  Google Scholar 

  • Forman RTT, Galli AE, Leck CF (1976) Forest size and avian diversity in New Jersey woodlots with some land use implications. Oecologia 26:1–9

    Article  Google Scholar 

  • Galli AE, Leck CF, Forman RTT (1976) Avian distribution patterns in forest islands of different size in central New-Jersey. Auk 93:356–364

    Google Scholar 

  • Gilpin E, Soulé ME (1986) Minimum viable populations: processes of species extinction. In: Soulé M (ed) Conservation biology: the science of scarcity and diversity. Sinauer, Sunderland, pp 19–34

    Google Scholar 

  • Grafen A (1989) The phylogenetic regression. Philos Trans R Soc B Biol Sci 326:119–157

    Article  CAS  Google Scholar 

  • Grömping U (2006) Relative importance for linear regression in R: the package relaimpo. J Stat Softw 17:1–27

    Article  Google Scholar 

  • Groves CR, Jenses DB, Valutis LL, Redford KH, Shaffer ML, Scott M, Baumgartner JV, Higgins JV, Beck MW, Anderson MG (2002) Planning for biodiversity conservation: putting conservation science into practice. Bioscience 52:499–512

    Article  Google Scholar 

  • Hanski I (1998) Metapopulation dynamics. Nature 396:41–49

    Article  CAS  Google Scholar 

  • Hanski I (1999) Metapopulation ecology. Oxford University Press, Oxford

    Google Scholar 

  • Hanski I (2001) Spatially realistic theory of metapopulation ecology. Naturwissenchaften 81:372–381

    Article  Google Scholar 

  • Keogh JS, Scott IAW, Hayes C (2005) Rapid and repeated origin of insular gigantism and dwarfism in Australian tiger snakes. Evolution 59:226–233

    PubMed  Google Scholar 

  • Koojman SALM (2000) Dynamic energy and mass budget in biological systems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lafranchis T (2004) Butterflies of Europe. Diatheo, Paris

    Google Scholar 

  • Lindeman RH, Merenda PF, Gold RZ (1980) Introduction to bivariate and multivariate analysis. Scott, Foresman and Co., Glenview

  • Lindstedt SL, Miller BJ, Buskirk SW (1986) Home range, time, and body size in mammals. Ecology 67:413–418

    Google Scholar 

  • McNab BK (1963) Bioenergetics and the determination of home range size. Am Nat 97:133–140

    Article  Google Scholar 

  • Mueller T, Fagan WF (2008) Search and navigation in dynamic environments—from individual behaviors to population distributions. Oikos 117:654–664

    Article  Google Scholar 

  • Orme D, Freckleton R, Thomas G, Petzoldt T, Fritz S, Isaac N (2011) Caper: comparative analyses of phylogenetics and evolution in R R package version 04. http://CRANR-projectorg/package=caper

  • Peters RH (1983) The ecological implications of body size. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Pianka ER (1974) Evolutionary ecology. Harper and Row, New York

    Google Scholar 

  • Pierce NE, Braby MF, Heath A, Lohman DJ, Mathew J, Rand DB, Travassos MA (2002) The ecology and evolution of ant association in the Lycaenidae (Lepidoptera). Annu Rev Entomol 47:733–771

    Article  PubMed  CAS  Google Scholar 

  • Reed DH, O’Grady JJ, Brook BW, Ballou JD, Frankham R (2003) Estimates of minimum viable population sizes for vertebrates and factors influencing those estimates. Biol Conserv 113:23–34

    Article  Google Scholar 

  • Savage VM, Gillooly JF, Brown JH, West GB, Charnov EL (2004) Effects of body size and temperature on population growth. Am Nat 163:429–441

    Article  PubMed  Google Scholar 

  • Sinervo B, Clobert J (2008) Life-history strategies, multidimensional trade-offs and behavioural syndromes. In: Danchin E, Giraldeau LA, Cezilly F (eds) Behavioural ecology, Oxford University Press, Oxford

  • Stevens VM, Turlure C, Baguette M (2010a) A meta-analysis of dispersal in butterflies. Biol Rev 85:625–642

    PubMed  Google Scholar 

  • Stevens VM, Pavoine S, Baguette M (2010b) Variation within and between closely related species uncovers high intra-specific variability in dispersal. PLoS One 5:e11123

    Article  PubMed  Google Scholar 

  • Stevens VM, Trochet A, Van Dyck H, Clobert J, Baguette M (2012) How is dispersal integrated in life histories: a quantitative analysis using butterflies. Ecol Lett 15:74–86

    Article  PubMed  Google Scholar 

  • Stevens VM, Trochet A, Blanchet S, Moulherat S, Clobert J, Baguette M (in press) Dispersal syndromes and the use of life-histories to predict dispersal. Evol Appl

  • Tammaru T, Haukioja E (1996) Capital breeders and income breeders among lepidoptera: consequences to population dynamics. Oikos 77:571–574

    Google Scholar 

  • Thomas CD (1990) What do real population dynamics tell us about minimum viable population sizes? Conserv Biol 4:324–327

    Article  Google Scholar 

  • Traill LW, Bradshaw CJA, Brook BW (2007) Minimum viable population size: a meta-analysis of 30 years of published estimates. Biol Conserv 139:159–166

    Article  Google Scholar 

  • Turlure C, Schtickzelle N, Van Dyck H, Baguette M (2009) Resource-based habitat definition, niche overlap and conservation of two sympatric glacial relict butterflies. Oikos 118:150–160

    Article  Google Scholar 

  • Turlure C, Choutt J, Van Dyck H, Baguette M, Schtickzelle N (2010) Functional habitat area as a reliable proxy for population size: case study using two butterfly species of conservation concern. J Insect Conserv 14:379–388

    Article  Google Scholar 

  • Vos CC, Verboom J, Opdam PFM, Ter Braak CJF (2001) Toward ecologically scaled landscape indices. Am Nat 157:24–41

    Article  PubMed  CAS  Google Scholar 

  • Wenny DG, Clawson RL, Faaborg J, Sheriff SL (1993) Population density, habitat selection and minimum area requirement of three forest-interiors warblers in central Missouri. Condor 95:968–979

    Article  Google Scholar 

  • Wickman PO, Garcia-Barros E, Rappe-George C (1995) The location of landmark leks in the small heath butterfly, Coenonympha pamphilus: evidence against the hot-spot model. Behav Ecol 6:39–45

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge funding from the EU FP7 SCALES project (“Securing the conservation of biodiversity across Administrative levels and spatial, temporal and Ecological Scales”; project no. 226852). This work is part of the “Laboratoire d’Excellence” (LABEX) entitled TULIP (ANR-10-LABX-41). We received very interesting comments from two reviewers that helped us to improve our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Baguette.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baguette, M., Stevens, V. Predicting minimum area requirements of butterflies using life-history traits. J Insect Conserv 17, 645–652 (2013). https://doi.org/10.1007/s10841-013-9548-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-013-9548-x

Keywords

Navigation