Skip to main content
Log in

Don’t Blame the Idealizations

  • Article
  • Published:
Journal for General Philosophy of Science Aims and scope Submit manuscript

Abstract

Idealizing conditions are scapegoats for scientific hypotheses, too often blamed for falsehood better attributed to less obvious sources. But while the tendency to blame idealizations is common among both philosophers of science and scientists themselves, the blame is misplaced. Attention to the nature of idealizing conditions, the content of idealized hypotheses, and scientists’ attitudes toward those hypotheses shows that idealizing conditions are blameless when hypotheses misrepresent. These conditions help to determine the content of idealized hypotheses, and they do so in a way that prevents those hypotheses from being false by virtue of their constituent idealizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong, D. M. (2004). Truth and truthmakers. New York: Cambridge University Press.

    Book  Google Scholar 

  • Bettleheim, F. A., Brown, W. H., Campbell, M. K., & Farrell, S. O. (2010). Introduction to general, organic and biochemistry (9th ed.). Belmont, CA: Brooks/Cole.

    Google Scholar 

  • Bransford, J. D., Brown, A. L., & Cooking, R. R. (1999). How experts differ from novices. In M. S. Donovan, J. D. Bransford, & J. W. Pellegrino (Eds.), How people learn: Brain, mind, experience, and school (pp. 19–38). Washington, D.C.: National Academies Press.

  • Cartwright, N. (1983). How the laws of physics lie. New York: Oxford University Press.

    Book  Google Scholar 

  • Cartwright, N. (1989). Nature’s capacities and their measurement. New York: Oxford University Press.

    Google Scholar 

  • Derden, J. (2003). A different conception of scientific realism: The case for the missing explananda. The Journal of Philosophy, 100, 243–267.

    Google Scholar 

  • Donovan, M. S., & Bransford, J. D. (2005). Pulling threads. In M. S. Donovan & J. D. Bransford (Eds.), How students learn: Science in the classroom (pp. 569–590). Washington, D.C.: National Academies Press.

    Google Scholar 

  • Elgin, C. (2007). Understanding and the facts. Philosophical Studies, 132, 33–42.

    Article  Google Scholar 

  • Frigg, R., & Hartmann, S. (2009). Models in science. In E.N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Summer 2009 Edition). plato.stanford.edu/archives/sum2009/entries/models-science/.

  • Frigg, R., & Hunter, M. (Eds.). (2010). Beyond mimesis and convention: Representation in art and science. New York: Springer.

    Google Scholar 

  • Gadre, S. R., & Shirsat, R. N. (2001). Electrostatics of atoms and molecules. India: Orient Blackswan.

    Google Scholar 

  • Gaillard, M. K., Grannis, P. D., & Sciulli, F. J. (1999). The standard model of particle physics. Reviews of Modern Physics, 71, S96–S111.

    Article  Google Scholar 

  • Giere, R. N. (2006). Scientific perspectivism. Chicago: The University of Chicago Press.

    Book  Google Scholar 

  • Giere, R. (2009). Models and fictions. In M. Suárez (Ed.), Fictions in science: Philosophical essays on modeling and idealization (pp. 248–258). New York: Routledge.

    Google Scholar 

  • Glashow, S. L. (1999). Does quantum field theory need a foundation? In T. Y. Cao (Ed.), Conceptual foundations of quantum field theory (pp. 74–88). Cambridge: Cambridge University Press.

    Google Scholar 

  • Halliday, D., Resnick, R., & Walker, J. (2001). Fundamentals of physics, extended sixth edition. New York: Wiley.

    Google Scholar 

  • Hartmann, S. (1998). Idealization in quantum field theory. In N. Shanks (Ed.), Poznan studies in the philosophy of science and the humanities: Idealization in contemporary physics (Vol. 64, pp. 99–122). Amsterdam: Rodopi.

    Google Scholar 

  • Jackman, R. L., Cottrell, T. J., & Harris, L. J. (1994). Protein engineering. In Y. H. Hui & G. G. Khachatourains (Eds.), Food biotechnology: Microorganisms (pp. 181–236). New York: Wiley-Interscience.

  • Jones, M. R. (2005). Idealization and abstraction: A framework. In M. R. Jones & N. Cartwright (Eds.), Idealization XII: Correcting the model—idealization and abstraction in the sciences (pp. 173–218). Amsterdam: Rodopi.

    Google Scholar 

  • Jones, N. (2009). General relativity and the standard model: Why evidence for one does not disconfirm the other. Studies in History and Philosophy of Modern Physics, 40, 124–132.

    Article  Google Scholar 

  • King, G. C. (2009). Vibrations and waves. New York: Wiley.

    Google Scholar 

  • Kotz, J. C., Treichel, P. M., & Townsend, J. (2009). Chemistry and chemical reactivity (7th ed.). Belmont, CA: Brooks/Cole.

    Google Scholar 

  • Lange, M. (2002). Who’s afraid of ceteris-paribus laws? Or: How I learned to stop worrying and love them. Erkenntnis, 57, 281–301.

    Article  Google Scholar 

  • Laymon, R. (1984). The path from data to theory. In J. Leplin (Ed.), Scientific realism (pp. 108–123). Berkeley: University of California Press.

    Google Scholar 

  • Laymon, R. (1985). Idealizations and the testing of theories by experimentation. In P. Achinstein & O. Hannaway (Eds.), Observation, experiment, and hypothesis in modern physical science (pp. 147–173). Cambridge, MA: Cambridge University Press.

    Google Scholar 

  • McMullin, E. (1985). Galilean idealization. Studies in History and Philosophy of Science, 16, 247–273.

    Article  Google Scholar 

  • Rohrlich, F. (2002). The validity limits of physical theories. Physics Letters A, 295, 320–322.

    Article  Google Scholar 

  • Rohrlich, F., & Hardin, L. (1983). Established theories. Philosophy of Science, 50, 603–617.

    Article  Google Scholar 

  • Saranin, V. A. (1999). On the interaction of two electrically charged conducting balls. Soviet Physics Uspekhi, 42, 385–390.

    Article  Google Scholar 

  • Slater, M. (2008). How to justify teaching false science. Science Education, 92, 526–542.

    Article  Google Scholar 

  • Smith, S. (2002). Violated laws, ceteris paribus clauses, and capacities. Synthese, 130, 235–264.

    Article  Google Scholar 

  • Smythe, W. R. (1968). Static and dynamic electricity (3rd ed.). NY: McGraw-Hill.

    Google Scholar 

  • Suárez, M. (2010). Scientific representation. Philosophy Compass, 5, 91–101.

    Article  Google Scholar 

  • Suppe, F. (1989). The Semantic conception of theories and scientific realism. Chicago: University of Illinois Press.

    Google Scholar 

  • Tennant, N. (2010). Inferential semantics for first-order logic: Motivating rules of inference from rules of evaluation. In J. Lear & A. Oliver (Eds.), The force of argument: Essays in honor of Timothy Smiley (pp. 223–257). New York: Routledge.

    Google Scholar 

  • Tu, L.-C., & Luo, J. (2004). Experimental tests of Coulomb’s law and the photon rest mass. Metrologia, 41, S136–S146.

    Article  Google Scholar 

  • Wimsatt, W. C. (1987). False models as a means to truer theories. In M. Nitecki & A. Hoffman (Eds.), Neutral models in biology (pp. 23–55). New York: Oxford University Press.

    Google Scholar 

  • Winsberg, E. (2009). Science in the age of computer simulation. Chicago: University of Chicago Press.

    Google Scholar 

  • Worrall, J. (1984). An unreal image. The British Journal for the Philosophy of Science, 35, 65–80.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholaos Jones.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, N. Don’t Blame the Idealizations. J Gen Philos Sci 44, 85–100 (2013). https://doi.org/10.1007/s10838-013-9206-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10838-013-9206-8

Keywords

Navigation