Skip to main content
Log in

A fully coupled scheme for a Boltzmann-Poisson equation solver based on a spherical harmonics expansion

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The numerical properties of a deterministic Boltzmann equation solver based on a spherical harmonics expansion of the distribution function are analyzed and improved. A fully coupled discretization scheme of the Boltzmann and Poisson equations is proposed, where stable equations are obtained based on the H-transformation. It is explicitly shown that the resultant Jacobian matrix for the zeroth order component has property M for a first order expansion, which improves the stability even of higher order expansions. The detailed dependence of the free-streaming operator and the scattering operator on the electrostatic potential is exactly considered in the Newton-Raphson scheme. Therefore, convergence enhancement is achieved compared with previous Gummel-type approaches. This scheme is readily applicable to small-signal and noise analysis. As numerical examples, simulation results are shown for a silicon n + nn + structure including a magnetic field, an SOI NMOSFET and a SiGe HBT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thompson, S., et al.: 130 nm logic technology featuring 60 nm transistors, low-k dielectrics and Cu interconnects. Int. Technol. J. 06(02), 5 (2002)

    Google Scholar 

  2. Nekovee, M., et al.: Failure of extended-moment-equation approaches to describe ballistic transport in submicrometer structures. Phys. Rev. B 45(12), 6643 (1992)

    Article  Google Scholar 

  3. Fischetti, M.V., et al.: Understanding hot-electron transport in silicon devices: is there a shortcut? J. Appl. Phys. 78, 1058 (1995)

    Article  Google Scholar 

  4. Shur, M.S.: Low ballistic mobility in submicron HEMTs. IEEE Electron Device Lett. 23(9), 511 (2002)

    Article  Google Scholar 

  5. Jungemann, C., et al.: Failure of moments-based transport models in nanoscale devices near equilibrium. IEEE Trans. Electron Devices 52(11), 2404 (2005)

    Article  Google Scholar 

  6. Madelung, O.: Introduction to Solid State Theory. Springer, Berlin (1978)

    Google Scholar 

  7. Jacoboni, C., Lugli, P.: The Monte Carlo Method for Semiconductor Device Simulation. Springer, Wien (1989)

    Google Scholar 

  8. van Kampen, N.G.: Stochastic Process in Physics and Chemistry. North-Holland, Amsterdam (1981)

    Google Scholar 

  9. Price, P.J.: Monte Carlo calculation of electron transport in solids. Semicond. Semimet. 14, 249 (1979)

    Google Scholar 

  10. Kurosawa, T.: Monte Carlo calculation of hot electron problems. J. Phys. Soc. Jpn. 21, 424 (1966)

    Google Scholar 

  11. Fawcett, W., et al.: Monte Carlo determination of electron transport properties in gallium arsenide. J. Phys. Chem. Solids 31, 1963 (1970)

    Article  Google Scholar 

  12. Reklaitis, A.: The calculation of electron transient response in semiconductors by the Monte Carlo technique. Phys. Lett. 13, 367 (1982)

    Google Scholar 

  13. Reggiani, L.: Hot-Electron Transport in Semiconductors. Springer, Berlin (1985)

    Google Scholar 

  14. Nedjalkov, M., Vitanov, P.: Iteration approach for solving the Boltzmann equation with the Monte Carlo method. Solid-State Electron. 32, 893 (1989)

    Article  Google Scholar 

  15. Moglestue, C.: Monte Carlo Simulation of Semiconductor Devices. Chapman & Hall, London (1993)

    Google Scholar 

  16. Hess, K. (ed.): Monte Carlo Device Simulation: Full Band and Beyond. Kluwer, Boston (1991)

    MATH  Google Scholar 

  17. Fischetti, M.V., Laux, S.E.: Monte Carlo analysis of electron transport in small semiconductor devices including band-structure and space-charge effects. Phys. Rev. B 38, 9721 (1988)

    Article  Google Scholar 

  18. Jungemann, C., Meinerzhagen, B.: Analysis of the stochastic error of stationary Monte Carlo device simulations. IEEE Trans. Electron Devices 48(5), 985 (2001)

    Article  Google Scholar 

  19. Jungemann, C., et al.: Hierarchical 2–D DD and HD noise simulations of Si and SiGe devices, part II: results. IEEE Trans. Electron Devices 49(7), 1258 (2002)

    Article  Google Scholar 

  20. Banoo, K., Lundstrom, M.S.: Electron transport in a model Si transistor. Solid-State Electron. 44, 1689 (2000)

    Article  Google Scholar 

  21. Banoo, K., Lundstrom, M.: Direct solution of the Boltzmann transport equation in nanoscale Si devices. In: Proc. SISPAD, pp. 50–53 (2000)

  22. Ringhofer, C.: Space-time discretization of series expansion methods for the Boltzmann transport equation. SIAM J. Numer. Anal. 38, 442 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  23. Ringhofer, C.: Numerical methods for the semiconductor Boltzmann equation based on spherical harmonics expansions and entropy discretizations. Transp. Theory Stat. Phys. 31(4–6), 431 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  24. Ringhofer, C.: A mixed spectral-difference method for the steady state Boltzmann-Poisson system. SIAM J. Numer. Anal. 41(1), 64 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  25. Ringhofer, C., et al.: Moment methods for the semiconductor Boltzmann equation in bounded position domains. SIAM J. Numer. Anal. 39, 1078 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  26. Baraff, G.A.: Maximum anisotropy approximation for calculating electron distributions; application to high field transport in semiconductors. Phys. Rev. 133(1A), A26 (1964)

    Article  Google Scholar 

  27. Ventura, D., et al.: Multidimensional spherical harmonics expansion of Boltzmann equation for transport in semiconductors. Appl. Math. Lett. 5, 85 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  28. Vecchi, M.C., Rudan, M.: Modeling electron and hole transport with full-band structure effects by means of the spherical-harmonics expansion of the BTE. IEEE Trans. Electron Devices 45(1), 230 (1998)

    Article  Google Scholar 

  29. Jungemann, C., et al.: Stable discretization of the Boltzmann equation based on spherical harmonics, box integration, and a maximum entropy dissipation principle. J. Appl. Phys. 100, 024502 (2006)

    Article  Google Scholar 

  30. Smirnov, S., Jungemann, C.: A full band deterministic model for semiclassical carrier transport in semiconductors. J. Appl. Phys. 99, 063707 (2006)

    Article  Google Scholar 

  31. Hong, S.-M., Jungemann, C.: Simulation of magnetotransport in nanoscale devices. In: International Conference on Solid State and Integrated Circuits Technology, pp. 377–380 (2008)

  32. Liang, W., et al.: 2-D MOSFET modeling including surface effects and impact ionization by self-consistent solution of the Boltzmann, Poisson, and hole-continuity equations. IEEE Trans. Electron Devices 44(2), 257 (1997)

    Article  Google Scholar 

  33. Gnudi, A., et al.: Two-dimensional MOSFET simulation by means of a multidimensional spherical harmonics expansion of the Boltzmann transport equation. Solid-State Electron. 36(4), 575 (1993)

    Article  Google Scholar 

  34. Hong, S.-M., et al.: A deterministic Boltzmann equation solver for two-dimensional semiconductor devices. In: Proc. SISPAD, pp. 293–296 (2008)

  35. Goldsman, N., et al.: Advances in the spherical Harmonic-Boltzmann-Wigner approach to device simulation. Superlattices Microstruct. 27, 159 (2000)

    Article  Google Scholar 

  36. Hennacy, K.A., Goldsman, N.: A Generalized Legendre polynomial/sparse matrix approach for determining the distribution function in non-polar semiconductors. Solid-State Electron. 36, 869 (1993)

    Article  Google Scholar 

  37. Hennacy, K.A., et al.: Deterministic MOSFET simulation using a generalized spherical harmonic expansion of the Boltzmann equation. Solid-State Electron. 38, 1485 (1995)

    Article  Google Scholar 

  38. Rahmat, K., et al.: Simulation of semiconductor devices using a Galerkin/spherical harmonic expansion approach to solving the coupled Poisson-Boltzmann system. IEEE Trans. Comput.-Aided Des. 15(10), 1181 (1996)

    Article  Google Scholar 

  39. Lin, C.-K., et al.: Frequency domain analysis of the distribution function by small signal solution of the Boltzmann and Poisson equations. In: Proc. SISPAD, pp. 39–42 (1999)

  40. Jungemann, C.: A deterministic approach to RF noise in silicon devices based on the Langevin Boltzmann equation. IEEE Trans. Electron Devices 54(5), 1185 (2007)

    Article  Google Scholar 

  41. Jungemann, C., et al.: New highly efficient method for the analysis of correlation functions based on a spherical harmonics expansion of the BTE’s Green’s function. In: Proc. IWCE, pp. 45–48 (1994)

  42. Korman, C.E., Mayergoyz, I.D.: Semiconductor noise in the framework of semiclassical transport. Phys. Rev. B 54, 17620 (1996)

    Article  Google Scholar 

  43. Jungemann, C., Meinerzhagen, B.: A Legendre polynomial solver for the Langevin Boltzmann equation. J. Comput. Electron. 3, 157 (2004)

    Article  Google Scholar 

  44. Hong, S.-M., Jungemann, C.: Deterministic simulation of SiGe HBTs based on the Boltzmann equation. In: Proc. ESSDERC, pp. 170–173 (2008)

  45. Hong, S.-M., Jungemann, C.: Investigation of noise performance of SiGe HBTs by deterministic simulation of Boltzmann equation in two-dimensional real space. In: International Conference on Noise in Physical Systems and 1/f Fluctuations, pp. 573–576 (2009)

  46. Brunetti, R., et al.: Diffusion coefficient of electrons in silicon. J. Appl. Phys. 52, 6713 (1981)

    Article  Google Scholar 

  47. Herring, C., Vogt, E.: Transport and deformation-potential theory for many-valley semiconductors with anisotropic scattering. Phys. Rev. 101(3), 944 (1956)

    Article  MATH  Google Scholar 

  48. Goldsman, N., et al.: A physics-based analytical/numerical solution to the Boltzmann transport equation for use in device simulation. Solid-State Electron. 34, 389 (1991)

    Article  Google Scholar 

  49. Marshak, A.H., van Vliet, K.M.: Electrical current in solids with position-dependent band structure. Solid-State Electron. 21, 417 (1978)

    Article  Google Scholar 

  50. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1972)

    MATH  Google Scholar 

  51. Jin, S., et al.: Theoretical study of carrier transport in silicon nanowire transistors based on the multisubband Boltzmann transport equation. IEEE Trans. Electron Devices 55, 2886 (2008)

    Article  Google Scholar 

  52. Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences. Computer Science and Applied Mathematics. Academic Press, New York (1979)

    MATH  Google Scholar 

  53. Varga, R.S.: Matrix Iterative Analysis. Series in Automatic Computation. Prentice-Hall/Englewood Cliffs, New Jersey (1962)

    Google Scholar 

  54. Jungemann, C., Meinerzhagen, B.: Hierarchical Device Simulation: The Monte-Carlo Perspective. Computational Microelectronics. Springer, Wien (2003)

    MATH  Google Scholar 

  55. Branin, F.H.: Network sensitivity and noise analysis simplified. IEEE Trans. Circuit Theory 20, 285 (1973)

    Google Scholar 

  56. Bonani, F., et al.: An efficient approach to noise analysis through multidimentional physics-based models. IEEE Trans. Electron Devices 45(1), 261 (1998)

    Article  Google Scholar 

  57. Hong, S.-M., et al.: Governing equations of the terminal current Green’s functions and their application to derivation of the Nyquist theorem for multi-terminal semiconductor devices. J. Appl. Phys. 102, 073717 (2007)

    Article  Google Scholar 

  58. Jungemann, C.: Transport and noise calculations for nanoscale Si devices based on the Langevin Boltzmann equation expanded with spherical harmonics. J. Comput. Theory Nanosci. 5(6), 1152 (2008)

    Google Scholar 

  59. Gritsch, M., et al.: Influence of generation/recombination effects in simulations of partially depleted SOI MOSFETs. Solid-State Electron. 45, 621 (2001)

    Article  Google Scholar 

  60. Gritsch, M., et al.: Revision of the standard hydrodynamic transport model for SOI simulation. IEEE Trans. Electron Devices 49(10), 1814 (2002)

    Article  Google Scholar 

  61. Polsky, B., et al.: On negative differential resistance in hydrodynamic simulation of partially depleted SOI transistors. IEEE Trans. Electron Devices 52, 500 (2005)

    Article  Google Scholar 

  62. Lombardi, C., et al.: A physical based mobility model for numerical simulation of nonplanar devices. IEEE Trans. Comput.-Aided Des. 7, 1164 (1988)

    Article  Google Scholar 

  63. Thoma, R., et al.: An improved impact–ionization model for high–energy electron transport in Si with Monte Carlo simulation. J. Appl. Phys. 69, 2300 (1991)

    Article  Google Scholar 

  64. Jungemann, C., et al.: Impact of the floating body effect on noise in SOI devices investigated by hydrodynamic simulation. In: Proc. SISPAD, pp. 235–238 (2004)

  65. Thoma, R., et al.: Hydrodynamic equations for semiconductors with nonparabolic bandstructures. IEEE Trans. Electron Devices 38(6), 1343 (1991)

    Article  Google Scholar 

  66. Mains, R.K., et al.: Simulation of GaAs IMPATT diodes including energy and velocity transport equations. IEEE Trans. Electron Devices 30(10), 1327 (1983)

    Article  Google Scholar 

  67. Jin, W., et al.: Shot-noise-induced excess low-frequency noise in floating-body partially depleted SOI MOSFET’s. IEEE Trans. Electron Devices 46(7), 1180 (1999)

    Article  Google Scholar 

  68. Klaassen, D.B.M., et al.: Unified apparent bandgap narrowing in n- and p-type silicon. Solid-State Electron. 35, 125 (1992)

    Article  Google Scholar 

  69. Fox, A., et al.: SiGe HBT module with 2.5 ps gate delay. In: IEEE Tech. Dig. IEDM, pp. 731–734 (2008)

  70. Bollhöfer, M., Saad, Y.: ILUPACK—preconditioning software package. Release 2.2 available online at www-public.tu-bs.de/~bolle/ilupack/ (2008)

  71. van den Biesen, J.: A simple regional analysis of transient times in bipolar transistors. Solid-State Electron. 29, 529 (1986)

    Article  Google Scholar 

  72. Rudolph, M., et al.: An HBT noise model valid up to transit frequency. IEEE Electron Device Lett. 20(1), 24 (1999)

    Article  Google Scholar 

  73. Niu, G., et al.: RF linearity characteristics of SiGe HBTs. IEEE Trans. Microwave Theory Tech. 49(9), 1558 (2001)

    Article  Google Scholar 

  74. Piazza, A.J., et al.: A physics-based semiconductor noise model suitable for efficient numerical implementation. IEEE Trans. Comput.-Aided Des. 18(12), 1730 (1999)

    Article  Google Scholar 

  75. Jungemann, C.: A deterministic solver for the Langevin Boltzmann equation including the Pauli principle. In: SPIE: Fluctuations and Noise (2007) 660007-1–660007-12

  76. Pham, A.T., et al.: A full-band spherical harmonics expansion of the valence bands up to high energies. In: Proc. SISPAD, pp. 361–364 (2006)

  77. Jungemann, C., Meinerzhagen, B.: A frequency domain spherical harmonics solver for the Langevin Boltzmann equation. In: International Conference on Noise in Physical Systems and 1/f Fluctuations. AIP Conf. Proc., pp. 777–782 (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Jungemann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, SM., Jungemann, C. A fully coupled scheme for a Boltzmann-Poisson equation solver based on a spherical harmonics expansion. J Comput Electron 8, 225–241 (2009). https://doi.org/10.1007/s10825-009-0294-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-009-0294-y

Keywords

Navigation