Skip to main content
Log in

Architecture for an external input into a molecular QCA circuit

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A simple architecture for data input into a molecular quantum-dot cellular automata (QCA) circuit from an external CMOS circuit is proposed. A “T”-shaped interconnect, utilizing fixed-polarization cells to provide the desired polarization, is controlled via external electrodes connected to a standard CMOS input driver. The applied input signal is used to gate either the propagation of a fixed polarization, P=+1, or that of the complementary fixed polarization, P=−1, into the QCA circuit. The architecture utilizes the field-driven clocking scheme proposed in recent literature to achieve transduction between applied input voltage and a molecular configuration. The system is modelled using the coherence vector formalism with a three-state basis and simulated using the QCADesigner simulation tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lieberman, M., Chellamma, S., Varughese, B., Wang, Y.L., Lent, C., Bernstein, G.H., Snider, G., Peiris, F.C.: Quantum-dot cellular automata at a molecular scale. Mol. Electron. 960, 225–239 (2002)

    Google Scholar 

  2. Lent, C.S.: Molecular electronics—bypassing the transistor paradigm. Science 288(5471), 1598–1599 (2000)

    Article  Google Scholar 

  3. Lent, C.S.: Quantum cellular automata. Nanotechnology 4, 49–57 (1993)

    Article  Google Scholar 

  4. Lu, Y.H., Lent, C.S.: A metric for characterizing the bistability of molecular quantum-dot cellular automata. Nanotechnology 19(15) (2008)

  5. Lu, Y., Liu, M., Lent, C.: Molecular quantum-dot cellular automata: From molecular structure to circuit dynamics. J. Appl. Phys. 102(3), 034311–7 (2007)

    Article  Google Scholar 

  6. Yuhui, L., Mo, L., Lent, C.: Molecular electronics—from structure to circuit dynamics. In: 6th IEEE Conference on Nanotechnology, vol. 1, pp. 62–65 (2006)

  7. Yuhui, L., Lent, C.S.: Theoretical study of molecular quantum dot cellular automata. In: 10th International Workshop on Computational Electronics, pp. 118–119 (2004)

  8. Hu, W.C., Sarveswaran, K., Lieberman, M., Bernstein, G.H.: High-resolution electron beam lithography and DNA nano-patterning for molecular qca. IEEE Trans. Nanotechnol. 4(3), 312–316 (2005)

    Article  Google Scholar 

  9. Qi, H., : Molecular quantum cellular automata cells. Electric field driven switching of a silicon surface bound array of vertically oriented two-dot molecular quantum cellular automata. J. Am. Chem. Soc. 125(49), 15250–15259 (2003)

    Article  Google Scholar 

  10. Walus, K., Jullien, G.A.: Design tools for an emerging soc technology: Quantum-dot cellular automata. Proc. IEEE 94(6), 1225–1244 (2006)

    Article  Google Scholar 

  11. Hennessy, K., Lent, C.S.: Clocking of molecular quantum-dot cellular automata. J. Vac. Sci. Technol. B 19(5), 1752–1755 (2001)

    Article  Google Scholar 

  12. Blair, E.P., Lent, C.S.: An architecture for molecular computing using quantum-dot cellular automata. In: 3rd IEEE Conference on Nanotechnology, vol. 1, pp. 402–405 (2003)

  13. Lent, C.S., Isaksen, B.: Clocked molecular quantum-dot cellular automata. IEEE Trans. Electron Devices 50(9), 1890–1896 (2003)

    Article  Google Scholar 

  14. Walus, K., Schulhof, G., Jullien, G.A.: Implementation of a simulation engine for clocked molecular qca. In: Canadian Conference on Electrical and Computer Engineering, pp. 2128–2131 (2006)

  15. Timler, J., Lent, C.S.: Maxwell’s demon and quantum-dot cellular automata. J. Appl. Phys. 94(2), 1050–1060 (2003)

    Article  Google Scholar 

  16. Lent, C.S., Liu, M., Lu, Y.H.: Bennett clocking of quantum-dot cellular automata and the limits to binary logic scaling. Nanotechnology 17(16), 4240–4251 (2006)

    Article  Google Scholar 

  17. Mahler, G., Weberrüs, V.A.: Quantum Networks: Dynamics of Open Nanostructures. Springer, Berlin (1998)

    Google Scholar 

  18. Walus, K., Dysart, T.J., Jullien, G.A., Budiman, R.A.: Qcadesigner: A rapid design and simulation tool for quantum-dot cellular automata. Nanotechnol., IEEE Trans. 3(1), 26–31 (2004)

    Article  Google Scholar 

  19. Timler, J., Lent, C.S.: Power gain and dissipation in quantum-dot cellular automata. J. Appl. Phys. 91(2), 823–831 (2002)

    Article  Google Scholar 

  20. Tamura, H., Kibune, M., Yamaguchi, H., Kanda, K., Gotoh, K., Ishida, H., Ogawa, J.: Circuits for CMOS high-speed i/o in sub-100 nm technologies. IEICE Trans. Electron. E 89(3), 300–311 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faizal Karim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walus, K., Karim, F. & Ivanov, A. Architecture for an external input into a molecular QCA circuit. J Comput Electron 8, 35–42 (2009). https://doi.org/10.1007/s10825-009-0268-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-009-0268-0

Keywords

Navigation