Skip to main content
Log in

Bias, reporting, and sharing: computational evaluations of docking methods

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Computational methods for docking ligands to protein binding sites have become ubiquitous in drug discovery. Despite the age of the field, no standards have been established with respect to methodological evaluation of docking accuracy, virtual screening utility, or scoring accuracy. There are critical issues relating to data sharing, data set design and preparation, and statistical reporting that have an impact on the degree to which a report will translate into real-world performance. These issues also have an impact on whether there is a transparent relationship between methodological changes and reported performance improvements. This paper presents detailed examples of pitfalls in each area and makes recommendations as to best practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Warren GL, Andrews CW, Capelli AM, Clarke B, LaLonde J, Lambert MH, Lindvall M, Nevins N, Semus SF, Senger S, Tedesco G, Wall ID, Woolven JM, Peishoff CE, Head MS (2006) A critical assessment of docking programs and scoring functions. J Med Chem 49(20):912–931

    Article  Google Scholar 

  2. Bissantz C, Folkers G, Rognan D (2000) Protein-based virtual screening of chemical databases. 1. Evaluation of different docking/scoring combinations. J Med Chem 43(25):4759–4767

    Article  CAS  Google Scholar 

  3. Huang N, Shoichet BK, Irwin JJ (2006) Benchmarking sets for molecular docking. J Med Chem 49(23):6789–6801

    Article  CAS  Google Scholar 

  4. Perola E, Walters WP, Charifson PS (2004) A detailed comparison of current docking and scoring methods on systems of pharmaceutical relevance. Proteins 56(2):235–249

    Article  CAS  Google Scholar 

  5. Miteva MA, Lee WH, Montes MO, Villoutreix BO (2005) Fast structure-based virtual ligand screening combining FRED, DOCK, and Surflex. J Med Chem 48(19):6012–6022

    Article  CAS  Google Scholar 

  6. Bohm HJ (1994) The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure. J Comput Aided Mol Des 8(3):243–256

    Article  CAS  Google Scholar 

  7. Jain AN (1996) Scoring noncovalent protein-ligand interactions: a continuous differentiable function tuned to compute binding affinities. J Comput Aided Mol Des 10(5):427–440

    Article  CAS  Google Scholar 

  8. Eldridge MD, Murray CW, Auton TR, Paolini GV, Mee RP (1997) Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. J Comput Aided Mol Des 11(5):425–445

    Article  CAS  Google Scholar 

  9. Jain AN (2006) Scoring functions for protein-ligand docking. Curr Protein Pept Sci 7(5):407–420

    Article  CAS  Google Scholar 

  10. Gohlke H, Hendlich M, Klebe G (2000) Knowledge-based scoring function to predict protein-ligand interactions. J Mol Biol 295(2):337–356

    Article  CAS  Google Scholar 

  11. Muegge I, Martin YC (1999) A general and fast scoring function for protein-ligand interactions: a simplified potential approach. J Med Chem 42(5):791–804

    Article  CAS  Google Scholar 

  12. Welch W, Ruppert J, Jain AN (1996) Hammerhead: fast, fully automated docking of flexible ligands to protein binding sites. Chem Biol 3(6):449–462

    Article  CAS  Google Scholar 

  13. Rarey M, Kramer B, Lengauer T, Klebe G (1996) A fast flexible docking method using an incremental construction algorithm. J Mol Biol 261(3):470–489

    Article  CAS  Google Scholar 

  14. Jain AN (2004) Virtual screening in lead discovery and optimization. Curr Opin Drug Discov Devel 7 (4):396–403

    CAS  Google Scholar 

  15. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47(7):1739–1749

    Article  CAS  Google Scholar 

  16. Goodsell DS, Morris GM, Olson AJ (1996) Automated docking of flexible ligands: applications of AutoDock. J Mol Recognit 9 (1):1–5

    Article  CAS  Google Scholar 

  17. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267(3):727–748

    Article  CAS  Google Scholar 

  18. Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE (1982) A geometric approach to macromolecule-ligand interactions. J Mol Biol 161(2):269–288

    Article  CAS  Google Scholar 

  19. Jain AN (2007) Surflex-Dock 2.1: robust performance from ligand energetic modeling, ring flexibility, and knowledge-based search. J Comput Aided Mol Des 21 (5):281–306

    Article  CAS  Google Scholar 

  20. Irwin JJ, Shoichet BK (2005) ZINC–a free database of commercially available compounds for virtual screening. J Chem Inf Model 45(1):177–182

    Article  CAS  Google Scholar 

  21. Pham TA, Jain AN (2006) Parameter estimation for scoring protein-ligand interactions using negative training data. J Med Chem 49(20):5856–5868

    Article  CAS  Google Scholar 

  22. Mayo SL (1990) DREIDING: A Generic Force Field for Molecular Simulations. J Phys Chem 94 (26):8897–8909

    Article  CAS  Google Scholar 

  23. Jain AN (2003) Surflex: fully automatic flexible molecular docking using a molecular similarity-based search engine. J Med Chem 46(4):499–511

    Article  CAS  Google Scholar 

  24. Cummings MD, DesJarlais RL, Gibbs AC, Mohan V, Jaeger EP (2005) Comparison of automated docking programs as virtual screening tools. J Med Chem 48(4):962–976

    Article  CAS  Google Scholar 

  25. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49 (21):6177–6196

    Article  CAS  Google Scholar 

  26. Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27(8):861–874

  27. Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47(7):1750–1759

    Article  CAS  Google Scholar 

  28. Sheridan RP, Singh SB, Fluder EM, Kearsley SK (2001) Protocols for bridging the peptide to nonpeptide gap in topological similarity searches. J Chem Inf Comput Sci 41(5):1395–1406

    Article  CAS  Google Scholar 

  29. Truchon J-F, Bayly CI (2007) Evaluating virtual screening methods: good and bad metrics for the “early recognition” problem. J Chem Inf Model 47(2):488–508

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges NIH for partial funding of the work (grant GM070481). Dr. Jain has a financial interest in BioPharmics LLC, a biotechnology company whose main focus is in the development of methods for computational modeling in drug discovery. Tripos Inc. has exclusive commercial distribution rights for Surflex-Dock, licensed from BioPharmics LLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay N. Jain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, A.N. Bias, reporting, and sharing: computational evaluations of docking methods. J Comput Aided Mol Des 22, 201–212 (2008). https://doi.org/10.1007/s10822-007-9151-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-007-9151-x

Keywords

Navigation