Skip to main content
Log in

River of the dammed: longitudinal changes in fish assemblages in response to dams

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Although dams are a common feature on rivers throughout the world, their effects on diversity, composition, and structure of fish assemblages are often unclear. We used electrified benthic trawls and stable isotope analysis of δ13C and δ15N to determine the complex relationships between taxonomic diversity and food web structure of fish assemblages among sites in the free-flowing and impounded reaches of the Allegheny River, Pennsylvania, USA. We found higher gamma and beta fish diversity in the free-flowing section, where Brillouin diversity increased in a downstream direction; however, in the impounded section, we found decreasing diversity downstream. Analysis of similarity and non-metric multi-dimensional scaling revealed longitudinal differences in Bray–Curtis similarity between assemblages from impounded and those from free-flowing sites. Finally, using stable isotope analysis, we showed that fishes in the free-flowing section derived nutrients primarily from benthic sources while fishes in the impounded section had a stronger reliance on pelagic nutrients. Our findings reveal that dams can reduce fish taxonomic diversity, driven primarily by decreases in lotic taxa, while shifting resource use from benthic toward pelagic nutrients. A multi-faceted approach to assess the cumulative effects of dams on aquatic communities is, therefore, recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson, C. & G. Cabana, 2005. δ15N in riverine food webs: effects of N inputs from agricultural watersheds. Canadian Journal of Fisheries and Aquatic Sciences 62: 333–340.

    Article  CAS  Google Scholar 

  • Argent, D. G. & W. G. Kimmel, 2011. Influence of navigational lock and dam structures on adjacent fish communities in a major river system. River Research and Applications 27(10): 1325–1333.

    Article  Google Scholar 

  • Barry, P. M., R. F. Carline, D. G. Argent & W. G. Kimmel, 2007. Movement and habitat use of stocked juvenile paddlefish in the Ohio River System, Pennsylvania. North American Journal of Fisheries Management 27: 1316–1325.

    Article  Google Scholar 

  • Berkman, H. E. & C. F. Rabeni, 1987. Effect of siltation on stream fish communities. Environmental Biology of Fishes 18(4): 285–294.

    Article  Google Scholar 

  • Bunn, S. E. & A. H. Arthington, 2002. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environmental Management 30(4): 492–507.

    Article  PubMed  Google Scholar 

  • Chandra, S., M. J. Vander Zanden, A. C. Heyvaert, B. C. Richards, B. C. Allen & C. R. Goldman, 2005. The effects of cultural eutrophication on the coupling between pelagic primary producers and benthic consumers. Limnology and Oceanography 50(5): 1368–1376.

    Article  CAS  Google Scholar 

  • Costanzo, S. D., M. J. O’Donohue, W. C. Dennison, N. R. Loneragan & M. Thomas, 2001. A new approach for detecting and mapping sewage impacts. Marine Pollution Bulletin 42(2): 149–156.

    Article  CAS  PubMed  Google Scholar 

  • Crist, T. O., J. A. Veech, J. C. Gering & K. S. Summerville, 2003. Partitioning species diversity across landscapes and regions: a hierarchical analysis of α, β, ανδ γ diversity. The American Naturalist 162(6): 734–743.

    Article  PubMed  Google Scholar 

  • Curry, R. A., S. L. Currie, L. Bernatchez & R. Saint-Laurent, 2004. The rainbow smelt, Osmerus mordax, complex of Lake Utopia: threatened or misunderstood? Environmental Biology of Fishes 69(1–4): 153–166.

    Article  Google Scholar 

  • Finlay, J. C., 2001. Stable-carbon-isotope ratios of river biota: implications for energy flow in lotic food webs. Ecology 82(4): 1052–1064.

    Google Scholar 

  • Finlay, J. C., M. E. Power & G. Cabana, 1999. Effects of water velocity on algal carbon isotope ratios: implications for river food web studies. Limnology and Oceanography 44(5): 1198–1203.

    Article  Google Scholar 

  • Freedman, J. A., 2010. Dams, Dredging, and Development: Effects of Anthropogenic Disturbances on Fish Ecology. The Pennsylvania State University, University Park.

    Google Scholar 

  • Freedman, J. A., T. D. Stecko, R. W. Criswell & J. R. Stauffer Jr., 2009a. Extensions of the known ranges of Percina shumardi Girard and three species of Etheostoma (subgenus Nothonotus) in Pennsylvania. Journal of the Pennsylvania Academy of Science 83(1): 42–44.

    Google Scholar 

  • Freedman, J. A., T. D. Stecko, B. D. Lorson & J. R. Stauffer Jr., 2009b. Development and efficacy of an electrified benthic trawl for sampling large-river fish assemblages. North American Journal of Fisheries Management 29: 1001–1005.

    Article  Google Scholar 

  • Freedman, J. A., R. F. Carline & J. R. Stauffer Jr., 2013. Gravel dredging alters diversity and structure of riverine fish assemblages. Freshwater Biology 58: 261–274.

    Article  CAS  Google Scholar 

  • Graf, W. L., 1999. Dam nation: a geographic census of American dams and their large-scale hydrologic impacts. Water Resources Research 35(4): 1305.

    Article  Google Scholar 

  • Graf, W. L., 2006. Downstream hydrologic and geomorphic effects of large dams on American rivers. Geomorphology 79(3–4): 336–360.

    Article  Google Scholar 

  • Gray, M. A., R. A. Cunjak & K. R. Munkittrick, 2004. Site fidelity of slimy sculpin (Cottus cognatus): insights from stable carbon and nitrogen analysis. Canadian Journal of Fisheries and Aquatic Sciences 61: 1717–1722.

    Article  Google Scholar 

  • Grey, J., S. Waldron & R. Hutchinson, 2004. The utility of carbon and nitrogen isotope analyses to trace contributions from fish farms to the receiving communities of freshwater lakes: a pilot study in Esthwaite Water, UK. Hydrobiologia 524(1): 253–262.

    Article  Google Scholar 

  • Haas, T., M. Blum & D. Heins, 2010. Morphological responses of a stream fish to water impoundment. Biology Letters 6: 803–806.

    Article  PubMed Central  PubMed  Google Scholar 

  • Harvey, B. C., 1986. Effects of suction gold dredging on fish and invertebrates in two California USA streams. North American Journal of Fisheries Management 6(3): 401–409.

    Article  Google Scholar 

  • Herzog, D. P., V. A. Barko, J. S. Scheibe, R. A. Hrabik & D. E. Ostendorf, 2005. Efficacy of a benthic trawl for sampling small-bodied fishes in large river systems. North American Journal of Fisheries Management 25: 594–603.

    Article  Google Scholar 

  • Hobson, K. A., 1999. Tracing origins and migration of wildlife using stable isotopes: a review. Oecologia 120(3): 314–326.

    Article  Google Scholar 

  • Hocutt, C. H., R. E. Jenkins & J. R. Stauffer Jr., 1986. Zoogeography of the fishes of the Central Appalachians and Central Atlantic Coastal Plain. In Hocutt, C. H. & E. O. Wiley (eds), Zoogeography of North American Freshwater Fishes. Wiley, New York.

    Google Scholar 

  • Kondolf, G. M., 1997. Hungry water: effects of dams and gravel mining on river channels. Environmental Management 21(4): 533–551.

    Article  PubMed  Google Scholar 

  • Kovach, W. L. 2009. Oriana—Circular statistics for Windows, version 3. Kovach Computing Services, Pentraeth, Wales, UK.

  • Langerhans, R. B., 2008. Predictability of phenotypic differentiation across flow regimes in fishes. Integrative and Comparative Biology 48(6): 750–768.

    Article  PubMed  Google Scholar 

  • Lytle, D. A. & N. L. Poff, 2004. Adaptation to natural flow regimes. Trends in Ecology & Evolution 19(2): 94–100.

    Article  Google Scholar 

  • Maloney, K. O., H. R. Dodd, S. E. Butler & D. H. Wahl, 2008. Changes in macroinvertebrate and fish assemblages in a medium sized river following a breach of a low head dam. Freshwater Biology 53(5): 1055–1068.

    Article  Google Scholar 

  • Milner, A. M. & R. J. Piorkowski, 2004. Macroinvertebrate assemblages in streams of interior Alaska following alluvial gold mining. River Research and Applications 20: 719–731.

    Article  Google Scholar 

  • Miranda, L. E., M. D. Habrat & S. Miyazono, 2008. Longitudinal gradients along a reservoir cascade. Transactions of the American Fisheries Society 137: 1851–1865.

    Article  Google Scholar 

  • Montgomery, D. R., 1999. Process domains and the river continuum. JAWRA Journal of the American Water Resources Association 35(2): 397–410.

    Article  Google Scholar 

  • Newsome, S. D., C. Martinez del Rio, S. Bearhop & D. L. Phillips, 2007. A niche for isotopic ecology. Frontiers in Ecology and the Environment 5(8): 429–436.

    Article  Google Scholar 

  • Nilsson, C., C. A. Reidy, M. Dynesius & C. Revenga, 2005. Fragmentation and flow regulation of the world’s large river systems. Science 308(5720): 405.

    Article  CAS  PubMed  Google Scholar 

  • Olden, J. D., N. LeRoy Poff, M. R. Douglas, M. E. Douglas & K. D. Fausch, 2004. Ecological and evolutionary consequences of biotic homogenization. Trends in Ecology & Evolution 19(1): 18–24.

    Article  Google Scholar 

  • Page, L. M., 1983. Handbook of Darters. TFH Publications, Neptune City, NJ.

    Google Scholar 

  • Palkovacs, E. P., K. B. Dion, D. M. Post & A. Caccone, 2007. Independent evolutionary origins of landlocked alewife populations and rapid parallel evolution of phenotypic traits. Molecular Ecology 17(2): 582–597.

    Article  PubMed  Google Scholar 

  • Pearson, W. D. & B. J. Pearson, 1989. Fishes of the Ohio River. Ohio Journal of Science 89(5): 181–187.

    Google Scholar 

  • Peterson, B. J. & B. Fry, 1987. Stable isotopes in ecosystem studies. Annual Reviews in Ecology and Systematics 18: 293–320.

    Article  Google Scholar 

  • Poff, N. L. & D. D. Hart, 2002. How dams vary and why it matters for the emerging science of dam removal. Bioscience 52(8): 659–668.

    Article  Google Scholar 

  • Poff, N. L. R., J. D. Allan, M. B. Bain, J. R. Karr, K. L. Prestegaard, B. D. Richter, R. E. Sparks & J. C. Stromberg, 1997. The natural flow regime. Bioscience 47(11): 769–784.

    Article  Google Scholar 

  • Poff, N. L. R., J. D. Olden, D. M. Merritt & D. M. Pepin, 2007. Homogenization of regional river dynamics by dams and global biodiversity implications. Proceedings of the National Academy of Sciences of the United States of America 104(14): 5732.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Post, D. M., 2002a. The long and short of food-chain length. Trends in Ecology & Evolution 17(6): 269–277.

    Article  Google Scholar 

  • Post, D. M., 2002b. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83(3): 703–718.

    Article  Google Scholar 

  • Post, D. M., C. A. Layman, D. A. Arrington, G. Takimoto, J. Quattrochi & C. G. Montana, 2007. Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152(1): 179–189.

    Article  PubMed  Google Scholar 

  • Power, M. E., W. E. Dietrich & J. C. Finlay, 1996. Dams and downstream aquatic biodiversity: potential food web consequences of hydrologic and geomorphic change. Environmental Management 20(6): 887–895.

    Article  PubMed  Google Scholar 

  • Rafinesque, C. S., 1820. Ichthyologia Ohiensis, or natural history of the fishes inhabiting the river Ohio and its tributary streams, preceded by a physical description of the Ohio and its branches. Printed for the author by W. G. Hunt, Lexington KY.

  • Rivier, B. & J. Seguier, 1985. Physical and biological effects of gravel extraction in river beds. In Alabaster, J. S. (ed.), Habitat Modification and Freshwater Fisheries. U.N. Food and Agriculture Organization, Rome: 131–146.

    Google Scholar 

  • Schmidt, S. N., J. D. Olden, C. T. Solomon & M. J. Vander Zanden, 2007. Quantitative approaches to the analysis of stable isotope food web data. Ecology 88(11): 2793–2802.

    Article  PubMed  Google Scholar 

  • Scott, W. B. & E. J. Crossman, 1973. Freshwater Fishes of Canada, 3rd ed. Galt House Publications Ltd., Oakville, ON.

    Google Scholar 

  • Simon, T. P., 1998. Assessment of Balon’s reproductive guilds with application to Midwestern North American Freshwater Fishes. In Simon, T. P. (ed.), Assessing the Sustainability and Biological Integrity of Water Resources Using Fish Communities. CRC Press, New York: 97–122.

    Google Scholar 

  • Stauffer, Jr., J. R., R. Taylor, R. Cleaver Yoder, B. D. Lorson, K. M. Taylor & B. Fost, 2010. Larval fish survey of the navigational channels of the Ohio River system. US Army Corps of Engineers, Pittsburgh, PA: 391 pp.

  • Thomas, J. A., E. B. Emery & F. H. McCormick, 2005. Detection of temporal trends in Ohio River fish assemblages based on lockchamber surveys (1957-2001). In Rinne, J. N., H. R. Hughes & R. Calamusso (eds), Historical Changes in Large River Fish Assemblages of the Americas. American Fisheries Society, Bethesda, MD: 431–450.

    Google Scholar 

  • Thorp, J. H. & M. D. Delong, 1994. The riverine productivity model: an heuristic view of carbon sources and organic processing in large river ecosystems. Oikos 70(2): 305–308.

    Article  Google Scholar 

  • Trautman, M. B., 1981. The Fishes of Ohio. Ohio State University Press, Columbus.

    Google Scholar 

  • Trudeau, V. & J. B. Rasmussen, 2003. The effect of water velocity on stable carbon and nitrogen isotope signatures of periphyton. Limnology and Oceanography 48(6): 2194–2199.

    Article  CAS  Google Scholar 

  • Vadeboncoeur, Y., E. Jeppesen, M. J. Vander Zanden, H. H. Schierup, K. Christoffersen & D. M. Lodge, 2003. From Greenland to green lakes: cultural eutrophication and the loss of benthic pathways in lakes. Limnology and Oceanography 48(4): 1408–1418.

    Article  Google Scholar 

  • Vander Zanden, M. J. & J. B. Rasmussen, 1999. Primary consumer delta C-13 and delta N-15 and the trophic position of aquatic consumers. Ecology 80(4): 1395–1404.

    Article  Google Scholar 

  • Vander Zanden, M. J. & J. B. Rasmussen, 2001. Variation in delta N-15 and delta C-13 trophic fractionation: implications for aquatic food web studies. Limnology and Oceanography 46(8): 2061–2066.

    Article  CAS  Google Scholar 

  • Vander Zanden, M. J. & Y. Vadeboncoeur, 2002. Fishes as integrators of benthic and pelagic food webs in lakes. Ecology 83(8): 2152–2161.

    Article  Google Scholar 

  • Vander Zanden, M. J., Y. Vadeboncoeur, M. W. Diebel & E. Jeppesen, 2005. Primary consumer stable nitrogen isotones as indicators of nutrient source. Environmental Science & Technology 39(19): 7509–7515.

    Article  CAS  Google Scholar 

  • Vanderklift, M. A. & S. Ponsard, 2003. Sources of variation in consumer-diet δ15N enrichment: a meta-analysis. Oecologia 136: 169–182.

    Article  PubMed  Google Scholar 

  • Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.

    Article  Google Scholar 

  • Veech, J. A. & T. O. Crist, 2009. PARTITION: Software for Hierarchical Partitioning of Species Diversity, Version 3.0. http://www.users.muohio.edu/cristto/partition.htm.

  • Vorosmarty, C. J., M. Meybeck, B. Fekete, K. Sharma, P. Green & J. P. M. Syvitski, 2003. Anthropogenic sediment retention: major global impact from registered river impoundments. Global and Planetary Change 39(1–2): 169–190.

    Article  Google Scholar 

  • Ward, J. V. & J. A. Stanford, 1983. The serial discontinuity concept of river ecosystems. In Fontaine, T. D. & S. M. Bartell (eds), Dynamics of Lotic Ecosytems. Ann Arbor Science Publishers, Ann Arbor, MI: 29–42.

    Google Scholar 

  • Webster, J. R. & B. C. Patten, 1979. Effects of watershed perturbation on stream potassium and calcium dynamics. Ecological Monographs 49: 51–72.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank A. Anderson, V. Cavener, D. Cooper, H. Goldstein, A. Henning, R. Lorson, R. Lorson, T. Stecko, K. Taylor, T. Vasilopoulos, and R. Yoder for their invaluable field and laboratory assistance. The Stable Isotopes in Nature Laboratory at the University of New Brunswick performed the stable isotope analysis. An earlier draft of this manuscript was improved by addressing comments and suggestions from two anonymous reviewers. This research received funding and support from State Wildlife Grant T-42 administered by the Pennsylvania Fish and Boat Commission; from the Pennsylvania Department of Conservation and Natural Resources through Wild Resources Conservation Program Grants WRCP-06171 and WRCP-07269; and from the United States Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan A. Freedman.

Additional information

Handling editor: Katya E. Kovalenko

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freedman, J.A., Lorson, B.D., Taylor, R.B. et al. River of the dammed: longitudinal changes in fish assemblages in response to dams. Hydrobiologia 727, 19–33 (2014). https://doi.org/10.1007/s10750-013-1780-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-013-1780-6

Keywords

Navigation