Skip to main content

Advertisement

Log in

Paleolimnological assessment of limnological change in 10 lakes from northwest Saskatchewan downwind of the Athabasca oils sands based on analysis of siliceous algae and trace metals in sediment cores

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The extraction of bitumen from the Athabasca oil sands is rapidly expanding, and emission of sulphur and nitrogen oxides has substantially increased. To determine whether lakes downwind of this development in northwest Saskatchewan have been detrimentally impacted since development of the oil sands, a paleolimnological assessment of ten lakes was carried out. Analysis of diatom valves and inferences of diatom-inferred pH indicated that emissions have not resulted in widespread chronic acidification of acid-sensitive lakes ~80–250 km east and northeast of the oil sands development around Fort McMurray and Fort Mackay. However, one of the closest sites to the development indicated a slight decline in diatom-inferred pH, but the two next closest sites, both of which had higher alkalinity, did not show any evidence of acidification. There were also no consistent trends in the concentration or flux of total or individual priority pollutants including lead, mercury, copper, zinc and vanadium. The sedimentation rates in most lakes increased since the mid-1900s, along with increased flux of both diatoms and scaled chrysophytes. Subtle changes in the species assemblages of diatoms and increased flux of diatoms and chrysophyte scales are consistent with recent climate change in this region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adrian, R., C. M. O’Reilly, H. Zagarese, S. B. Baines, D. O. Hessen, W. Keller, D. M. Livingstone, R. Sommaruga, D. Straile, E. Van Donk, G. A. Weyhenmeyer & M. Winder, 2009. Lakes as sentinels of climate change. Limnology and Oceanography 54: 2283–2297.

    Article  PubMed  Google Scholar 

  • Ahad, J. M. E., B. F. Cumming, B. Das & H. Sanei, 2011. Assessing the Potential Environmental Impact of Athabasca Oil Sands Development in Lakes Across Northwest Saskatchewan. 2011 American Geological Union (AGU) Fall Meeting, San Francisco.

    Google Scholar 

  • Aherne, J. & D. P. Shaw, 2010. Impact of sulphur and nitrogen deposition in western Canada. Journal of Limnology 69(Suppl 1): 1–3.

    Google Scholar 

  • Appleby, P. G. & F. Oldfield, 1978. The calculation of lead-210 dates assuming a constant rate of sully of unsupported 210Pb to the sediment. Catena 5: 1–8.

    Article  CAS  Google Scholar 

  • Augustsson, A., P. Peltola, B. Bergbäck, T. Saarinen & E. Haltia-Hovi, 2010. Trace and metal geochemical variability during 5,500 years in the sediment of lake Lehmilampi, Finland. Journal of Paleolimnology 44: 1025–1038.

    Article  Google Scholar 

  • Baron, J., S. A. Norton, D. R. Beeson & R. Herrmann, 1986. Sediment diatom and metal stratigraphy from Rocky Mountain lakes with special reference to atmospheric deposition. Canadian Journal of Fisheries and Aquatic Sciences 43: 1350–1362.

    Article  Google Scholar 

  • Baron, J. S., C. T. Driscoll, J. L. Stoddard & E. E. Richer, 2011. Empirical critical loads of atmospheric nitrogen deposition for nutrient enrichment and acidification of sensitive US lakes. Bioscience 61: 602–613.

    Article  Google Scholar 

  • Basascio, N. & R. S. Bradley, 2012. Evaluating Holocene climate change in northern Norway using sediment records from two contrasting lake systems. Journal of Paleolimnology 48: 259–273.

    Article  Google Scholar 

  • Battarbee, R. W. & M. J. Kneen, 1982. The use of electronically counted microspheres in absolute diatom analysis. Limnology and Oceanography 27: 184–188.

    Article  Google Scholar 

  • Battarbee, R. W., R. J. Flower, A. C. Stevenson & B. Rippey, 1985. Lake acidification in Galloway: a palaeoecological test of competing hypotheses. Nature 314: 350–352.

    Article  CAS  Google Scholar 

  • Benner Jr., B. A., S. A. Wise, L. A. Currie, G. A. Klouda, D. B. Klinedinst, R. B. Zweidinger, R. K. Stevens & C. W. Lewis, 1995. Distinguishing the contributions of residential wood combustion and mobile source emissions using relative concentrations of dimethylphenanthrene isomers. Environmental Science and Technology 29: 2382–2389.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, K. D., 1996. Determination of the number of zones in a biostratigraphical sequence. New Phytology 132: 155–170.

    Article  Google Scholar 

  • Bergström, A. & M. Jansson, 2006. Atmospheric nitrogen deposition has caused nitrogen enrichment and eutrophication of lakes in the northern hemisphere. Global Change Biology 12: 635–643.

    Article  Google Scholar 

  • Bindler, R., J. Rydberg & I. Renberg, 2011. Establishing natural sediment reference conditions for metals and the legacy of long-range and local pollution on lakes in Europe. Journal of Paleolimnology 45: 519–531.

    Article  Google Scholar 

  • Binford, M. W., 1990. Calculation and uncertainty analysis of 210Pb for PIRLA project lakes sediment cores. Journal of Paleolimnology 3: 253–267.

    Article  Google Scholar 

  • Camburn, K. R. & D. F. Charles, 2000. Diatoms of Low-Alkalinity Lakes in the Northeastern United States. Academy of Natural Sciences, Philadelphia.

    Google Scholar 

  • Charles, D. F. & J. P. Smol, 1990. The PIRLA II Project: regional assessment of lake acidification trends. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 24: 474–480.

    Google Scholar 

  • Cumming, B. F., J. P. Smol & H. J. B. Birks, 1992. Scaled chrysophytes (Chrysophyceae and Synurophyceae) from Adirondack drainage lakes and their relationship to environmental variables. Journal of Phycology 28: 162–178.

    Article  Google Scholar 

  • Cumming, B. F., K. A. Davey, J. P. Smol & H. J. B. Birks, 1994. When did acid sensitive Adirondack lakes (New-York, USA) acidify and are they still acidifying. Canadian Journal of Fisheries and Aquatic Sciences 51: 1550–1568.

    Article  CAS  Google Scholar 

  • Curtis, C. J., R. Flower, N. Rose, J. Shilland, G. L. Simpson, S. Turner, H. Yang & S. Pla, 2010. Palaeolimnological assessment of lake acidification and environmental change in the Athasbasca oil sands region, Alberta. Journal of Limnology 69(Suppl 1): 92–104.

    Google Scholar 

  • Engstrom, D. R. & H. R. Wright Jr., 1984. Chemical stratigraphy of lake sediments as a record of environmental change. In Haworth, E. Y. & J. W. G. Lund (eds), Lake Sediments and Environmental History. University of Minnesota Press, Minneapolis: 11–67.

    Google Scholar 

  • Fallu, M., N. Allaire & R. Pienitz, 2000. Freshwater Diatoms from Northern Québec and Labrador (Canada). Bibliotheca Diatomologica Band 45. Gebrüder Borntraeger, Berlin.

    Google Scholar 

  • Fitzgerald, W. F., D. R. Engstrom, R. P. Mason & E. A. Nater, 1998. The case for atmospheric mercury contamination in remote areas. Environmental Science and Technology 32: 1–7.

    Article  CAS  Google Scholar 

  • Flower, R. J. & R. W. Battarbee, 1983. Diatom evidence for recent acidification of two Scottish lochs. Nature 305: 130–133.

    Article  CAS  Google Scholar 

  • Galloway, J. N., J. D. Thornton, S. A. Norton, H. L. Volchok & R. A. N. McLean, 1982. Trace metals in atmospheric deposition: a review and assessment. Atmospheric Environment 16: 1677–1700.

    Article  CAS  Google Scholar 

  • Glew, J. R., J. P. Smol & W. M. Last, 2001. Sediment core collection and extrusion. In Last, W. M. & J. P. Smol (eds), Tracking Environmental Change Using Lake Sediments, Vol. 1., Basin Analysis, Coring, and Chronological Techniques Kluwer Academic Publishers, Dordrecht: 73–105.

    Chapter  Google Scholar 

  • Greaver, T. L., T. J. Sullivan, J. D. Herrick, M. C. Barber, J. S. Baron, B. J. Cosby, M. E. Deerhake, R. L. Dennis, J. B. Dubois, C. L. Goodale, A. T. Herlihy, G. B. Lawrence, L. Liu, J. A. Lynch & K. J. Novak, 2012. Ecological effects of nitrogen and sulfur air pollution in the US: what do we know? Frontiers in Ecology and Environment 10: 365–372.

    Article  Google Scholar 

  • Grice, K., H. Lu, P. Atahan, M. Asif, C. Hallmann, P. Greenwood, E. Maslen, S. Tulipani, K. Williford & J. Dodson, 2009. New insights into the origin of perylene in geological samples. Geochimica et Cosmochimica Acta 73: 6531–6543.

    Article  CAS  Google Scholar 

  • Grimm, E. C., 1987. CONISS – a fortran-77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers & Geosciences 13: 13–35.

    Article  Google Scholar 

  • Hazenwinkel, R. R. O., A. P. Wolfe, S. Pla, C. Curtis & K. Hadley, 2008. Have atmospheric emissions from the Athabasca oil sands impacted lakes in northeastern Alberta, Canada? Canadian Journal of Fisheries and Aquatic Sciences 65: 1554–1567.

    Article  Google Scholar 

  • Hyatt, C. V., A. M. Paterson, B. F. Cumming & J. P. Smol, 2010. Factors related to regional and temporal variation in the distribution of scaled chrysophytes in northeastern North America: evidence from lake sediments. Nova Hedwigia, Beiheft 136: 87–102.

    Google Scholar 

  • Juggins, S., 2003. C2 Software for Ecological and Palaeoecological Data Analysis and Visualization User Guide Version 1.3. University of Newcastle, Newcastle.

    Google Scholar 

  • Kelly, E. N., J. W. Short, D. W. Schindler, P. V. Hodson, M. Ma, A. K. Kwan & B. L. Fortin, 2009. Oil sands development contributes polycyclic aromatic compounds to the Athabasca River and its tributaries. Proceedings of the National Academy of Sciences 106: 22346–22351.

    Article  CAS  Google Scholar 

  • Kelly, E. N., D. W. Schindler, P. V. Hodson, J. W. Short, R. Radmanovich & C. C. Nielsen, 2010. Oil sands development contributes elements toxic at low concentrations to the Athabasca River and its tributaries. Proceedings of the National Academy of Sciences 107: 16178–16183.

    Article  CAS  Google Scholar 

  • Kingsbury, M. V., K. R. Laird & B. F. Cumming, 2012. Consistent patterns in diatom assemblages and diversity measures across water-depth gradients from eight Boreal lakes from northwestern Ontario (Canada). Freshwater Biology 57: 1151–1165.

    Article  CAS  Google Scholar 

  • Krammer, K. & H. Lange-Bertalot, 1986. Bacillariophyceae. 1: Teil: Naviculaceae. In Ettl, H., G. Gärtner, J. Gerloff, H. Heynig & D. Mollenhauer (eds), Süßwasserflora von Mitteleuropa, Band 2/1. Gustav Fischer Verlag, Stuttgart/New York.

    Google Scholar 

  • Krammer, K. & H. Lange-Bertalot, 1988. Bacillariophyceae. 2: Teil: Bacillariaceae, Epithmiaceae, Surirellaceae. In Ettl, H., G. Gärtner, J. Gerloff, H. Heynig & D. Mollenhauer (eds), Süßwasserflora von Mitteleuropa, Band 2/2. Gustav Fischer Verlag, Stuttgart/New York.

    Google Scholar 

  • Krammer, K. & H. Lange-Bertalot, 1991a. Bacillariophyceae. 3: Teil: Centrales, Fragilariaceae, Eunotiaceae. In Ettl, H., G. Gärtner, J. Gerloff, H. Heynig & D. Mollenhauer (eds), Süßwasserflora von Mitteleuropa, Band 2/3. Gustav Fischer Verlag, Stuttgart/Jena.

    Google Scholar 

  • Krammer, K. & H. Lange-Bertalot, 1991b. Bacillariophyceae. 4: Teil: Achnanthaceae. In Ettl, H., G. Gärtner, J. Gerloff, H. Heynig & D. Mollenhauer (eds), Süßwasserflora von Mitteleuropa, Band 2/4. Gustav Fischer Verlag, Stuttgart/Jena.

    Google Scholar 

  • Kurek, J., J. L. Kirk, D. C. G. Muir, X. Wang, M. S. Evans & J. P. Smol, 2013. The legacy of a half century of Athabasca oil sands development recorded by lake ecosytems. Proceedings of the National Academy of Sciences 110: 1761–1766.

    Article  CAS  Google Scholar 

  • Lange-Bertalot, H. & D. Melzeltin, 1996. Indicators of oligotrophy. Vol. 2 Iconographia Diatomologica. Koeltz Scientific Books, Königstein.

  • Norton, S. A., R. W. Bienert Jr., M. W. Binford & J. S. Kahl, 1992. Stratigraphy of total metals in PIRLA sediment cores. Journal of Paleolimnology 7: 191–214.

    Article  Google Scholar 

  • Nriagu, J. O., 1979. Global inventory of natural and anthropogenic emission of trace metals to the atmosphere. Nature 279: 409–411.

    Article  PubMed  CAS  Google Scholar 

  • Nriagu, J. O., 1990. Global metal pollution. Environment 32: 7–33.

    Article  Google Scholar 

  • Nriagu, J. O., 1996. A history of global metal pollution. Science 272: 223–224.

    Article  CAS  Google Scholar 

  • Parsons, B. G., S. A. Watmough, P. J. Dillon & K. M. Somers, 2010a. A bioassessment of lakes in the Athabasca oil sands region, Alberta, using benthic macroinvertebrates. Journal of Limnology 69: 105–117.

    Google Scholar 

  • Parsons, B. G., S. A. Watmough, P. J. Dillon & K. M. Somers, 2010b. Relationships between lake water chemistry and benthic macroinvertebrates in the Athabasca oil sands region, Alberta. Journal of Limnology 69: 118–125.

    Google Scholar 

  • Pla, S. & C. J. Curtis, 2006. Lake Sediment Core Top Sample Analysis. Prepared for the Cumulative Environmental Management Association (CEMA) NOx–SOx Management Working Group, available through the CEMA, Fort McMurray, Alberta.

  • Ramdahl, T., 1983. Retene – a molecular marker of wood combustion in ambient air. Nature 306: 580–582.

    Article  CAS  Google Scholar 

  • Reimann, C. & P. Caritat, 2005. Distinguishing between natural and anthropogenic sources for elements in the environment: regional geochemical surveys versus enrichment factors. Science of the Total Environment 337: 91–107.

    Article  PubMed  CAS  Google Scholar 

  • Renberg, I., 1986. Concentration and annual accumulation values of heavy metals in lake sediments: their significance in studies of the history of heavy metal pollution. Hydrobiologia 143: 379–385.

    Article  CAS  Google Scholar 

  • Rognerud, S. & E. Fjeld, 2001. Trace elements contamination of Norwegian lake sediments. Ambio 30: 11–19.

    PubMed  CAS  Google Scholar 

  • Rognerud, S., T. Skotvold, E. Fjeld, S. A. Norton & A. Hobæk, 1998. Concentrations of trace metals elements in recent and preindustrial sediments from Norwegian and Russian Arctic lakes. Canadian Journal of Fisheries and Aquatic Sciences 55: 1512–1523.

    Article  CAS  Google Scholar 

  • Rühland, K., A. M. Paterson & J. P. Smol, 2008. Hemispheric-scale patterns of climate-related shifts in planktonic diatoms from North American and European lakes. Global Change Biology 14: 2740–2754.

    Google Scholar 

  • Saros, J. E., D. E. Clow, T. Blett & A. P. Wolfe, 2011. Critical nitrogen deposition loads in high-elevation lakes of the western US inferred from paleolimnological records. Water, Air & Soil Pollution 216: 193–202.

    Article  CAS  Google Scholar 

  • Schelske, C. L., A. Peplow, M. Brenner & C. N. Spencer, 1994. Low-background gamma counting: applications for 210Pb dating of sediments. Journal of Paleolimnology 10: 115–128.

    Article  Google Scholar 

  • Schindler, D. W., 2010. Tar sands need solid science. Nature 468: 499–501.

    Article  PubMed  CAS  Google Scholar 

  • Schindler, D. W. & W. F. Donahue, 2006. An impending water crisis in Canada’s western prairie provinces. Proceedings of the National Academy of Sciences 103: 7210–7216.

    Article  CAS  Google Scholar 

  • Scott, K. A., B. Wissel, J. J. Gibson & S. J. Birks, 2010. Chemical characteristics and acid sensitivity of boreal headwater lakes in northwest Saskatchewan. Journal of Limnology 69(Suppl 1): 33–44.

    Google Scholar 

  • Siver, P. A., 1995. The distribution of chrysophytes along environmental gradients: their use as biological indicators. In Sandgren, C. D., J. P. Smol & J. Kristiansen (eds), Chrysophyte Algae: Ecology, Phylogeny and Development. Cambridge University Press, Cambridge: 232–268.

    Chapter  Google Scholar 

  • Skjelkvåle, B. L., T. Andersen, E. Fjeld, J. Mannio, A. Wilander, K. Johansson, J. P. Jensen & T. Moiseenko, 2001. Heavy metal surveys in Nordic lakes; concentrations, geographic patterns and relation to critical limits. Ambio 30: 2–10.

    PubMed  Google Scholar 

  • Smol, J. P., R. W. Battarbee, R. B. Davis & J. Merilainen, 1986. Diatoms and lake acidity: reconstructing pH from siliceous algal remains in lake sediments. W. Junk, Dordrecht.

    Book  Google Scholar 

  • Sullivan, T. J., D. F. Charles, J. P. Smol, B. F. Cumming, J. P. Smol, A. R. Selle, D. R. Thomas, J. A. Bernert & S. S. Dixit, 1990. Quantification of changes in lakewater chemistry in response to acidic deposition. Nature 345: 54–58.

    Article  CAS  Google Scholar 

  • Umbanhowar Jr., C. E., P. Camill & J. A. Dorale, 2011. Regional heterogeneity and the effects of land use and climate on 20 lakes in the big woods region of Minnesota. Journal of Paleolimnology 45: 151–166.

    Article  Google Scholar 

  • Wakeham, S. G., C. Schaffner & W. Giger, 1980. Polycyclic aromatic hydrocarbons in recent lake sediments. II. Compounds derived from biogenic precursors during early diagenesis. Geochimica et Cosmochimica Acta 44: 415–429.

    Article  CAS  Google Scholar 

  • Whitfield, C. J., J. Aherne, B. J. Cosby & S. A. Watmough, 2010. Modelling catchment response to acid deposition: a regional dual application of the MAGIC model to soils and lakes in the Athabasca oil sands region, Alberta. Journal of Limnology 69(Suppl 1): 147–160.

    Google Scholar 

  • Williamson, C. E., J. E. Saros, W. F. Vincent & J. P. Smol, 2009. Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnology and Oceanography 54: 2273–2282.

    Article  Google Scholar 

  • Winder, M. & D. E. Schindler, 2004. Climatic effects on the phenology of lake processes. Global Change Biology 10: 1844–1856.

    Article  Google Scholar 

  • Winder, M. & U. Sommer, 2012. Phytoplankton response to a changing climate. Hydrobiologia 698: 5–16.

    Article  Google Scholar 

Download references

Acknowledgments

This project was funded by the Saskatchewan Ministry of the Environment. We would like to thank Kenneth Scott for assistance with lake selection and fieldwork, Steve Wilke for assistance in the field, and Moumita Karkamar for assistance in the lab. We are also thankful to Oil Sands Quest Inc. for use of their facilities while undertaking the fieldwork associated with this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathleen R. Laird.

Additional information

Handling editor: Jasmine Saros

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Gamma activities: total 214Bi (open square) and 210Pb (closed square) in dpm g−1, and age models (time by depth) for each lake. (TIFF 65 kb)

Fig. S2

Percent abundance for the dominant chrysophyte scale taxa for each lake. (TIFF 99 kb)

Fig. S3

Total priority pollutant elements (PPE) concentration for each lake in µg g−1. (TIFF 50 kb)

Fig. S4

Concentration (µg g−1) and flux (µg cm−2 year−1) of lead for each study lake. (TIFF 51 kb)

Fig. S5

Concentration (µg g−1) and flux (µg cm−2 year−1) of mercury for each study lake. (TIFF 46 kb)

Fig. S6

Concentration (µg g−1) and flux (µg cm−2 year−1) of copper for each study lake. (TIFF 51 kb)

Fig. S7

Concentration (µg g−1) and flux (µg cm−2 year−1) of zinc for each study lake. (TIFF 48 kb)

Fig. S8

Concentration (µg g−1) and flux (µg cm−2 year−1) of vanadium for each study lake. (TIFF 51 kb)

Supplementary material (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laird, K.R., Das, B., Kingsbury, M. et al. Paleolimnological assessment of limnological change in 10 lakes from northwest Saskatchewan downwind of the Athabasca oils sands based on analysis of siliceous algae and trace metals in sediment cores. Hydrobiologia 720, 55–73 (2013). https://doi.org/10.1007/s10750-013-1623-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-013-1623-5

Keywords

Navigation