Skip to main content
Log in

Exploring the legacy effects of surface coal mining on stream chemistry

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Surface coal mining results in dramatic alterations of the landscape in central Appalachia, leading to a myriad of environmental problems. In this study, we explore the long-term effects of surface coal mining on stream chemistry and endeavor to gain a better understanding of the efficacy of reclamation. We examined 30 sites in the Raccoon Creek watershed in southeastern Ohio, where the majority of surface mine sites are in various stages of reclamation. Our results show that conductivity (r = 0.862; P = 0.000), sulfate (r = 0.619; P = 0.000), and aluminum (r = 0.469; P = 0.009) levels increase linearly as a function of the areal extent of reclaimed mines in each subwatershed, suggesting limited success of reclamation to restore natural stream chemistry. In contrast, pH was not significantly linearly correlated with the areal extent of surface mines. This suggests that local acid mine drainage remediation projects are able to regulate acidity levels in the watershed but not conductivity and certain heavy metal concentrations. Many sites had conductivity levels high enough to impair aquatic biota via ionic and osmoregulatory stress. In sum, surface coal mining appears to have a strong legacy effect on stream chemistry in the Raccoon Creek watershed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agouridis, C. T., P. N. Angel, T. J. Taylor, C. D. Barton, R. C. Warner, X. Yu & C. D. Wood, 2012. Water quality characteristics of discharge from reforested loose-dumped mine spoil in eastern Kentucky. Journal of Environmental Quality 41: 454–468.

    Article  PubMed  CAS  Google Scholar 

  • APHA, AWA & WEF, 2005. Standard Methods for the Examination of Water and Wastewater, 21st edn. American Public Health Association, Washington, DC.

  • ASTM Standard D516, 2002. Standard Test Method for Sulfate Ion in Water. ASTM International, West Conshohocken, PA. doi:10.1520/D0516-02.

  • ASTM Standard D3559, 2008. Standard Test Method for Lead in Water. ASTM International, West Conshohocken, PA. doi:10.1520/D3559-08.

  • Baker, J. P. & C. L. Schofield, 1982. Aluminum toxicity to fish in acidic water. Soil, Water, & Air Pollution 18: 289–309.

    Article  CAS  Google Scholar 

  • Bernhardt, E. S. & M. A. Palmer, 2011. The environmental costs of mountaintop mining valley fill operations for aquatic ecosystems of the Central Appalachians. Annals of the New York Academy of Sciences 1223: 39–57.

    Article  PubMed  Google Scholar 

  • Bernhardt, E. S., B. Lutz, R. S. King, J. P. Fay, C. E. Carter, A. M. Helton, D. Campagna & J. Amos, 2012. Environmental Science and Technology 46: 8112–8115.

    Article  Google Scholar 

  • Carroll, C., L. Merton & P. Burger, 2000. Impact of vegetative cover and slope on runoff, erosion, and water quality for field plots on a range of soil and spoil materials on central Queensland coal mines. Australian Journal of Soil Resources 38: 313–327.

    Article  Google Scholar 

  • Cormier, S. M., S. P. Wilkes & L. Zheng, 2013. Relationship of land use and elevated ionic strength in Appalachian watersheds. Environmental Toxicology and Chemistry 32: 296–303.

    Article  PubMed  CAS  Google Scholar 

  • Dodds, W. & M. Whiles, 2010. Freshwater Ecology: Concepts and Environmental Applications of Limnology, 2nd edn. Academic Press, Burlington.

    Google Scholar 

  • Ferrari, J. R., T. R. Lookingbill, B. McCormick, P. A. Townsend & K. N. Eshleman, 2009. Surface mining and reclamation effects on flood response of watersheds in the central Appalachian Plateau region. Water Resources Research 45: W04407.

    Article  Google Scholar 

  • Griffith, M. B., S. B. Norton, L. C. Alexander, A. I. Pollard & S. D. LeDuc, 2012. The effects of mountaintop mines and valley fills on the physicochemical quality of stream ecosystems in the central Appalachians: a review. Science of the Total Environment 417: 1–12.

    Article  PubMed  Google Scholar 

  • Hendryx, M. & M. Ahem, 2008. Relations between health indicators and residential proximity to coal mining in West Virginia. American Journal of Public Health 98: 669–671.

    Article  PubMed  Google Scholar 

  • Holl, K. D., 2002. Long-term vegetation recovery on reclaimed coal surface mines in the eastern USA. Journal of Applied Ecology 39: 960–970.

    Article  Google Scholar 

  • Johnson, D. B. & K. B. Hallberg, 2005. Acid mine drainage remediation options: a review. Science of the Total Environment 338: 3–14.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, B. R., A. Haas & K. M. Fritz, 2010. Use of spatially explicit physiochemical data to measure downstream impacts of headwater stream disturbance. Water Resources Research 46: W09526.

    Article  Google Scholar 

  • Lindberg, T. T., E. S. Bernhardt, R. Bier, A. M. Helton, R. B. Merola, A. Vengosh & R. R. Di Giulio, 2011. Cumulative impacts of mountaintop mining on an Appalachian watershed. Proceedings of the National Academy of Sciences 108: 20929–20934.

    Article  CAS  Google Scholar 

  • Maassen, S., D. Balla, T. Kalettka & O. Gabriel, 2012. Screening of prevailing processes that drive surface water quality of running waters in a cultivated wetland region of Germany – a multivariate approach. Science of the Total Environment 438: 154–165.

    Article  PubMed  CAS  Google Scholar 

  • Merricks, T. C., D. S. Cherry, C. E. Zipper, R. J. Currie & T. W. Valenti, 2007. Coal mine hollow fill and settling pond influences on headwater streams in southern West Virginia, USA. Environmental Monitoring and Assessment 129: 359–378.

    Article  PubMed  CAS  Google Scholar 

  • Negley, T. L. & K. N. Eshleman, 2006. Comparison of stormflow responses of surface-mined and forested watersheds in the Appalachian Mountains, USA. Hydrological Process 20: 3467–3483.

    Article  Google Scholar 

  • Nordstrom, D. K. & J. W. Ball, 1986. The geochemical behavior of aluminum in acidified surface waters. Science 232: 54–56.

    Article  PubMed  CAS  Google Scholar 

  • Northington, R. M., E. F. Benfield, S. H. Schoenholtz, A. J. Timpano, J. R. Webster & C. Zipper, 2011. As assessment of structural attributes and ecosystem function in restored Virginia coalfield streams. Hydrobiologia 671: 51–63.

    Article  Google Scholar 

  • OEPA, 1996. Biological and water quality study of the Raccoon Creek Basin. OEPA Technical Report Number MAS/1996-12-7.

  • OGS, 2008. Environmental Leaflet No. 8: coal. http://www.dnr.state.oh.us/Portals/10/pdf/EL/el08.pdf.

  • Palmer, M. A., E. S. Bernhardt, W. H. Schlesinger, K. N. Eshelman, E. Foufoula-Gergiou, M. S. Henrdryx, A. D. Lemly, G. E. Likens, O. L. Loucks, M. E. Power, P. S. White & P. R. Wilcock, 2010. Mountain top mining consequences. Science 327: 148–149.

    Article  PubMed  CAS  Google Scholar 

  • Petty, J. T., J. B. Fulton, M. P. Strager, G. T. Merovich Jr., J. M. Stiles & P. F. Ziemkiewicz, 2010. Landscape indicators and thresholds of stream ecological impairment in an intensively mined Appalachian watershed. Journal of the North American Benthological Society 29: 1292–1309.

    Article  Google Scholar 

  • Pond, G. J., 2010. Patterns of Ephemeropta taxa loss in Appalachian headwater streams (Kentucky, USA). Hydrobiologia 641: 185–201.

    Article  Google Scholar 

  • Pond, G. J., M. E. Passmore, F. A. Borsuk, L. Reynolds & C. J. Rose, 2008. Downstream effects of mountaintop coal mining: comparing biological conditions using family- and genus-level macroinvertebrate bioassessment tools. Journal of the North American Benthological Society 27: 717–737.

    Article  Google Scholar 

  • Reynolds, B. & K. J. Reddy, 2012. Infiltration rates in reclaimed surface coal mines. Water, Air, and Soil Pollution 223: 5941–5958.

    Article  CAS  Google Scholar 

  • Singleton, H., 2000. Ambient water quality guidelines for sulphate. Ministry of Environment, Lands and Parks, Province of British Columbia, Canada. http://www.env.gov.bc.ca/wat/wq/BCguidelines/sulphate/sulphate.html.

  • USEPA, 2011. The Effects of Mountaintop Mines and Valley Fills on Aquatic Ecosystems of the Central Appalachian Coalfields. Office of Research and Development, National Center for Environmental Assessment, Washington, DC. EPA/600/R-09/138F.

  • Wood, S. C., P. L. Younger & N. S. Robins, 1999. Long-term changes in the water quality of polluted minewater discharges from abandoned underground coal workings in Scotland. Quarterly Journal of Engineering Geology 32: 69–79.

    Article  Google Scholar 

Download references

Acknowledgments

This project was funded by a Provost Academic Excellence Initiative Grant from the University of Rio Grande and utilized instrumentation purchased through a grant from the Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy. Lastly, the comments of two anonymous reviewers also substantially improved the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. Hopkins II.

Additional information

Handling editor: P. Nõges

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hopkins, R.L., Altier, B.M., Haselman, D. et al. Exploring the legacy effects of surface coal mining on stream chemistry. Hydrobiologia 713, 87–95 (2013). https://doi.org/10.1007/s10750-013-1494-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-013-1494-9

Keywords

Navigation