Skip to main content
Log in

Critical Thermal Maxima of aquatic macroinvertebrates: towards identifying bioindicators of thermal alteration

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Water temperature is an important abiotic driver of aquatic ecosystems. It influences many aspects of an organism’s existence including its growth, feeding and metabolic rates; emergence; fecundity; behaviour and ultimately survival. All organisms have an optimum temperature range within which they survive and are able to thrive. Determining upper thermal limits provides insight into the relative sensitivity of organisms to elevated temperatures. Thermally sensitive taxa may be useful as bioindicators of thermal alteration and used in the generation of target thermal thresholds for aquatic systems. This study determined the upper thermal limit (CTmax) of a range of aquatic macroinvertebrates from rivers in the south-western Cape, South Africa, using the dynamic Critical Thermal Method. The study focused on the taxonomic level of family as an initial screening tool for ranking thermal sensitivity. Of the 27 families examined, four were both thermally sensitive and highly suitable as test organisms, including Paramelitidae, Notonemouridae, Teloganodidae and Philopotamidae. Five families were moderately sensitive and highly suitable, including Palaemonidae, Heptageniidae, Leptophlebiidae, Corydalidae and Aeshnidae. Preliminary experiments to determine potential sources of variation in CTmax revealed that thermal sensitivity was relatively uniform within families, but that acclimation temperature influenced CTmax. Further investigation of the influence of thermal history, acclimation temperature and rate of temperature change on CTmax is necessary. Target water temperatures for river management will be derived using CTmax data, in addition to longer duration experimental data, which will be linked to in situ temperature data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Beitinger, T., W. Bennet & R. McCauley, 2000. Temperature tolerances of North American freshwater fishes exposed to dynamic changes in temperature. Environmental Biology of Fishes 58: 237–275.

    Article  Google Scholar 

  • Brittain, J., 1991. Effect of temperature on egg development in the Australian stonefly genus Austrocercella Illies (Plecoptera: Notonemouridae). Australian Journal of Marine and Freshwater Research 42: 107–114.

    Article  Google Scholar 

  • Buchanan, J. A., B. A. Stewart & B. R. Davies, 1988. Thermal acclimation and tolerance to lethal high temperature in the mountain stream amphipod Paramelita nigroculus (Barnard). Comparative Biochemistry and Physiology 89: 425–431.

    Article  Google Scholar 

  • Caissie, D., 2006. The thermal regime of rivers: a review. Freshwater Biology 51: 1389–1406.

    Article  Google Scholar 

  • Campbell, I., 1986. Life histories of some Australian Siphlonurid and Oligoneurid mayflies (Insecta: Ephemeroptera). Australian Journal of Marine and Freshwater Research 37: 261–288.

    Article  Google Scholar 

  • Claussen, D. L., 1977. Thermal acclimation in Ambystomatid Salamanders. Comparative Biochemistry and Physiology 58: 333–340.

    Article  Google Scholar 

  • Claussen, D. L. & L. M. Walters, 1982. Thermal acclimation in the freshwater planarians Dugesia tigrina and D. dorotocephala. Hydrobiologia 94: 231–236.

    Article  Google Scholar 

  • Claussen, D., A. Grisak & P. Brown, 2003. The thermal relations of the freshwater triclad flatworm, Dugesia dorotocephala (Turbellaria:Tricladida). Journal of Thermal Biology 28: 457–464.

    Article  Google Scholar 

  • Dallas, H. F., 2008. Water temperature and riverine ecosystems: an overview of knowledge and approaches for assessing biotic response, with special reference to South Africa. Water SA 34: 393–404.

    Google Scholar 

  • Dallas, H.F. & J. A. Day, 2004. The Effect of Water Quality Variables on Aquatic Ecosystems: A Review. Water Research Commission Technical Report No. 224/04, Water Research Commission, Pretoria, South Africa.

  • Dallas, H. F. & Z. A. Ketley, 2011. Upper thermal limits of aquatic macroinvertebrates: comparing Critical Thermal Maxima with 96-LT50 values. Journal of Thermal Biology 36: 322–327.

    Google Scholar 

  • Dallas, H. F. & N. A. Rivers-Moore, in Press. Micro-scale heterogeneity in water temperature. Water SA.

  • Davies, P., B. Cook, K. Rutherford & T. Walshe, 2004. Managing High In-Stream Temperatures Using Riparian Vegetation. River Management Technical Guideline No. 5, Land & Water Australia, Canberra.

  • Elliott, J., 1987a. Egg hatching and resource partitioning in stoneflies: the six British Leuctra spp. (Plecoptera: Leuctridae). Journal of Animal Ecology 56: 415–426.

    Article  Google Scholar 

  • Elliott, J., 1987b. Temperature-induced changes in the life cycle of Leuctra nigra (Plecoptera: Leuctridae) from a Lake District stream. Freshwater Biology 18: 177–184.

    Article  Google Scholar 

  • Eriksen, C., 1964. Evidence of a spring rise in metabolic rate in the burrowing mayfly Ephemera simulans Walker. Hydrobiologia 23: 506–510.

    Article  Google Scholar 

  • Ernst, M., T. Beitinger & K. Stewart, 1984. Critical maxima of nymphs of three plecoptera species from an Ozark foothill stream. Freshwater Invertebrate Biology 3: 80–85.

    Article  Google Scholar 

  • Fry, F. E. J., 1947. Effects of the Environment on Animal Activity. University of Toronto Studies in Biology, Series No. 55, Publication of the Ontario Fisheries Research Laboratory 68: 1–62.

  • Garten, C. T. & J. B. Gentry, 1976. Thermal tolerance of dragonfly nymphs. II. Comparison of nymphs from control and thermally altered environments. Physiological Zoology 49(2): 206–213.

    Google Scholar 

  • Hanna, C. J. & V. A. Cobb, 2007. Critical thermal maximum of the green lynx spider, Peucetia viridans (Araneae, Oxyopidae). The Journal of Arachnology 35: 193–196.

    Article  Google Scholar 

  • Heiman, D. R. & A. W. Knight, 1972. Upper lethal temperature relations of the nymphs of the stonefly, Paragnetina media. Hydrobiologica 39: 479–493.

    Article  Google Scholar 

  • Hogg, I., D. Williams, J. Eadie & S. Butt, 1995. The consequences of global warming for stream invertebrates: a field simulation. Journal of Thermal Biology 20: 199–206.

    Article  Google Scholar 

  • Huryn, A., 1996. Temperature-dependent growth and life cycle of Deleatidium (Ephemeroptera: Leptophlebiidae) in two high-country streams in New Zealand. Freshwater Biology 36: 351–361.

    Article  Google Scholar 

  • King, J., J. Cambray & N. Impson, 1998. Linked effects of dam-released floods and water temperature on spawning of the Clanwilliam yellowfish Barbus capensis. Hydrobiologia 384: 245–265.

    Article  Google Scholar 

  • Kishi, D., M. Murakami, S. Nakano & K. Maekawa, 2005. Water temperature determines strength of top-down control in a stream food web. Freshwater Biology 50: 1315–1322.

    Article  Google Scholar 

  • Lagerspetz, K., 2003. Thermal acclimation without heatshock, and motor responses to a sudden temperature change in Asellus aquaticus. Journal of Thermal Biology 28: 421–427.

    Article  Google Scholar 

  • Layne, J. R., D. L. Claussen & M. L. Manis, 1987. Effects of acclimation temperature, season, and time of day on the critical thermal maxima and minima of the crayfish Orconectes rusticus. Journal of Thermal Biology 12: 183–187.

    Article  Google Scholar 

  • Lutterschmidt, W. I. & V. H. Hutchison, 1997. The critical thermal maximum: history and critique. Canadian Journal of Zoology 75: 1561–1574.

    Article  Google Scholar 

  • Manush, S., A. Pal, N. Chatterjee, T. Das & S. Mukherjee, 2004. Thermal tolerance and oxygen consumption of Macrobrachium rosenbergii acclimated to three temperatures. Journal of Thermal Biology 29: 15–19.

    Article  Google Scholar 

  • Martin, W. J. & J. B. Gentry, 1974. Effect of Thermal Stress on Dragonfly Nymphs. In Gibbons J.W. & R.R. Sharitz (eds), Thermal Ecology, Atomic Energy Commission: 133–145.

  • Martin, W. J., C. T. Garten & J. B. Gentry, 1976. Thermal tolerances of dragonfly nymphs. I. Sources of variation in estimating Critical Thermal Maximum. Physiological Zoology 49: 200–205.

    Google Scholar 

  • Mckie, B., P. Cranston & R. Pearson, 2004. Gondwanan mesotherms and cosmopolitan eurytherms: effects of temperature on the development and survival of Australian Chironomidae (Diptera) from tropical and temperate populations. Marine and Freshwater Research 55: 759–767.

    Article  Google Scholar 

  • Moulton, S. R., T. L. Beitinger, K. W. Stewart & R. J. Currie, 1993. Upper temperature tolerance of four species of caddisflies (Insecta: Trichoptera). Journal of Freshwater Ecology 8: 193–198.

    Article  Google Scholar 

  • Nebeker, A., 1971a. Effect of water temperature on nymphal feeding rate, emergence and adult longevity of the stonefly Pteronarcys dorsata. Journal of the Kansas Entomological Society 44: 21–26.

    Google Scholar 

  • Nebeker, A., 1971b. Effect of high winter water temperatures on adult emergence of aquatic insects. Water Research 5: 77–783.

    Article  Google Scholar 

  • Nebeker, A. & A. Lemke, 1968. Preliminary studies on the tolerance of aquatic insects to heated water. Journal of the Kansas Entomological Society 41: 413–418.

    Google Scholar 

  • Nelson, D. & D. Hooper, 1982. Thermal tolerance and preference of the freshwater shrimp Palaemonetes kadiakensis. Journal of Thermal Biology 7: 183–187.

    Article  Google Scholar 

  • Nietfeldt, J. W., S. M. Jones, D. L. Droge & R. E. Ballinger, 1980. Rate of thermal acclimation in larval Ambystoma tigrinum. Journal of Herpetology 14: 209–211.

    Article  Google Scholar 

  • ODEQ (Oregon Department of Environmental Quality), 1995. Water Quality Standards Review. Department of Environmental Quality Standards & Assessment Section. Portland, Oregon.

  • Olden, R. J. & R. J. Naiman, 2010. Incorporating thermal regimes into environmental flows assessments: modifying dam operations to restore freshwater ecosystem integrity. Freshwater Biology 55: 86–107.

    Article  Google Scholar 

  • Rajaguru, S., 2002. Critical thermal maximum of seven estuarine fishes. Journal of Thermal Biology 27: 125–128.

    Article  Google Scholar 

  • Rivers-Moore, N. A., G. P. W. Jewitt & D. C. Weeks, 2005. Derivation of quantitative management objectives for annual instream water temperatures in the Sabie River using a biological index. Water SA 31: 473–482.

    Google Scholar 

  • Rivers-Moore, N. A., D. A. Hughes & F. C. de Moor, 2008. A model to predict outbreak periods of the pest blackfly Simulium chutteri Lewis (Simuliidae, Diptera) in the Great Fish River, Eastern Cape province, South Africa. Rivers Research and Application 24: 132–147.

    Article  Google Scholar 

  • Rutherford, J., S. Blackett, C. Blackett, L. Saito & R. Davies-Colley, 1997. Predicting the effects of shade on water temperature in small streams. New Zealand Journal of Marine and Freshwater Research 31: 707–721.

    Article  Google Scholar 

  • Selvakumar, S. & P. Geraldine, 2005. Heat shock protein induction in the freshwater prawn Macrobrachium malcolmsonii: acclimation-influenced variations in the induction temperatures for Hsp70. Comparative Biochemistry and Physiology 140: 209–215.

    Article  PubMed  CAS  Google Scholar 

  • Smith, K., 1972. River water temperatures: an environmental review. Scottish Geographical Magazine 88: 211–220.

    Article  Google Scholar 

  • Sullivan, K., D. J. Martin, R. D. Cardwell, J. E. Toll & S. Duke, 2000. An analysis of the effects of temperature on salmonids of the Pacific Northwest with implications for selecting temperature criteria. Sustainable Ecosystems Institute, Oregon.

    Google Scholar 

  • Terblanche, J. S., J. A. Deere, S. Clusella-Trullas, C. Janion & S. L. Chown, 2007. Critical thermal limits depend on methodological context. Proceedings of the Royal Society B 274: 2935–2942.

    Article  PubMed  Google Scholar 

  • USEPA (United Stated Environmental Protection Agency), 1977. Temperature Criteria for Freshwater Fish: Protocol and Procedures. Ecological Research Series. U.S. Environmental Protection Agency Office of Research and Development, Environmental Research Laboratory, Duluth, Minnesota. EPA-600/3-77-061: 130 pp.

  • Vannote, R. & B. Sweeney, 1980. Geographic analysis of thermal equilibria: a conceptual model for evaluating the effect of natural and modified thermal regimes on aquatic insect communities. American Naturalist 115: 667–695.

    Article  Google Scholar 

  • Ward, J., 1985. Thermal characteristics of running waters. Hydrobiologia 125: 31–46.

    Article  Google Scholar 

  • Ward, J. & J. Stanford, 1982. Thermal responses in the evolutionary ecology of aquatic insects. Annual Revue of Entomology 27: 97–117.

    Article  Google Scholar 

  • Webb, B., P. Clack & D. Walling, 2003. Water-air temperature relationships in a Devon river system and the role of flow. Hydrological Processes 17: 3069–3084.

    Article  Google Scholar 

  • Webb, B. W., D. M. Hannah, D. Moore, L. E. Brown & F. Nobilis, 2008. Recent advances in stream and river temperature research. Hydrological Processes 22: 902–918.

    Article  Google Scholar 

  • Wellborn, G. & J. Robinson, 1996. Effects of a thermal effluent on macroinvertebrates in a central Texas reservoir. American Midland Naturalist 136: 110–120.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the funding provided by the Water Research Commission and the office and laboratory facilities provided by the Department of Zoology, University of Cape Town. Thanks are also due to Dr Denise Schael who assisted with the species identifications; Evans Simasiku and Zoma Anne Ketley who undertook some of the laboratory experiments; and Vere Ross-Gillespie who undertook some of the field collections. The authors thank two anonymous referees and Núria Bonada for their useful comments on previous drafts of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen F. Dallas.

Additional information

Handling editor: Núria Bonada

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dallas, H.F., Rivers-Moore, N.A. Critical Thermal Maxima of aquatic macroinvertebrates: towards identifying bioindicators of thermal alteration. Hydrobiologia 679, 61–76 (2012). https://doi.org/10.1007/s10750-011-0856-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-011-0856-4

Keywords

Navigation