Skip to main content
Log in

Strong influence of microhabitat on survival for an intertidal snail, Nucella lima

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Within a population, survival can vary widely among individuals based upon numerous aspects of the phenotype, including (but not limited to) age, size, and habitat use. We examined the role of microhabitat use, individual color, and length, in explaining within-population variation in survival for an intertidal snail, Nucella lima. We used a multi-state capture–mark–recapture approach to determine survival and movement rates and found that favored models constrained survival to be a function of microhabitat. Survival estimates from the best-fit model were different between habitat types, despite the fact that habitats were immediately adjacent. Fidelity and disproportionate movement into the habitat with the highest survival suggested possible adaptive habitat choice. This study highlights the importance of small-scale variation in influencing population vital rates, as well as the need for quantifying within-population heterogeneity in survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anderson, D. R., 2008. Model Based Inference in the Life Sciences: A Primer on Evidence. Springer, New York.

    Book  Google Scholar 

  • Anderson, M. G., M. S. Lindberg & R. B. Emery, 2001. Probability of survival and breeding juvenile female canvasbacks. Journal of Wildlife Management 65: 385–387.

    Article  Google Scholar 

  • Blums, P., J. D. Nichols, J. E. Hines, M. S. Lindberg & A. Mednis, 2005. Individual quality, survival variation, and patterns of phenotypic selection on body condition and timing of nesting in birds. Oecologia 143: 365–376.

    Article  PubMed  Google Scholar 

  • Brownie, C., J. E. Hines, J. D. Nichols, K. H. Pollock & J. B. Hestbeck, 1993. Capture-recapture studies for multiple strata including non-markovian transitions. Biometrics 49: 1173–1187.

    Article  Google Scholar 

  • Cain, A. J. & P. M. Sheppard, 1950. Selection in the polymorphic land snail Cepæa nemoraus. Heredity 4: 275–294.

    Article  CAS  PubMed  Google Scholar 

  • Cam, E., W. A. Link, E. G. Cooch, J. Y. Monnat & E. Danchin, 2002. Individual covariation in life-history traits: seeing the trees despite the forest. The American Naturalist 159: 96–2005.

    Article  PubMed  Google Scholar 

  • Cam, E., J. Y. Monnat & J. A. Royle, 2004. Dispersal and individual quality in a long lived species. Oikos 106: 386–398.

    Article  Google Scholar 

  • Carroll, M. L. & R. C. Highsmith, 1996. Role of catastrophic disturbance in mediating Nucella-Mytilus interactions in the rocky intertidal. Marine Ecology Progress Series 138: 125–133.

    Article  Google Scholar 

  • Caswell, H., 2001. Matrix Population Models. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Cooch, E. G., E. Cam & W. A. Link, 2002. Occam’s shadow: levels of analysis in evolutionary ecology—where to next? Journal of Applied Statistics 29: 19–48.

    Article  Google Scholar 

  • Etter, R. J., 1988. Physiological stress and color polymorphism in the intertidal snail Nucella lapillus. Evolution 42: 660–680.

    Article  Google Scholar 

  • Etter, R. J., 1989. Life history variation in the intertidal snail Nucella lapillus across a wave-exposure gradient. Ecology 70: 1857–1876.

    Article  Google Scholar 

  • Haldane, J. B. S., 1932. The Causes of Evolution. Harper & Brothers Publishers, New York, NY.

    Google Scholar 

  • Hughes, T. P., 1984. Population dynamics based on individual size rather than age: a general model with a reef coral example. The American Naturalist 123: 778–795.

    Article  Google Scholar 

  • Ioannou, C. C. & J. Krause, 2009. Interactions between background matching and motion during visual detection can explain why cryptic animals keep still. Biology Letters 5: 191–193.

    PubMed  Google Scholar 

  • Joe, M. & K. H. Pollock, 2002. Separation of survival and movement rates in multi-state capture-recapture models. Journal of Applied Statistics 29: 373–384.

    Article  Google Scholar 

  • Johannesson, K. & A. Ekendahl. 2002. Selective predation favoring cryptic individuals of snails (Littorina). Biological Journal of the Linnean Society 76: 137–144.

    Article  Google Scholar 

  • Johnson, M. S. & R. Black, 2008. Effects of contrasting tidal habitats on growth, survivorship and dispersal in an intertidal snail. Journal of Experimental Biology and Ecology 363: 96–103.

    Article  Google Scholar 

  • Jones, K. M. M. & E. G. Boulding, 1999. State-dependent habitat selection by an intertidal snail: the costs of selecting a physically stressful microhabitat. Journal of Experimental Marine Biology and Ecology 242: 149–177.

    Google Scholar 

  • Lebreton, J. D., K. P. Burnham, J. Clobert & D. R. Anderson, 1992. Modeling survival and biological hypotheses using marked animals: a unified approach with case studies. Ecological Monographs 62: 67–118.

    Article  Google Scholar 

  • Link, W. A., E. G. Cooch & E. Cam, 2002. Model based estimation of individual fitness. Journal of Applied Statistics 29: 207–224.

    Article  Google Scholar 

  • Main, K. L., 1987. Predator avoidance in seagrass meadows: prey behavior, microhabitat selection, and cryptic coloration. Ecology 68: 170–180.

    Article  Google Scholar 

  • Martin, T. E., 1998. Are microhabitat preferences of coexisting species under selection and adaptive? Ecology 79: 656–670.

    Article  Google Scholar 

  • Martin, T. E. & J. J. Roper, 1988. Nest predation and nest-site selection of a Western population of the hermit thrush. The Condor 90: 51–57.

    Article  Google Scholar 

  • Moran, A. L. & R. B. Emlet, 2001. Offspring size and performance in variable environments: field studies on a marine snail. Ecology 82: 1597–1612.

    Article  Google Scholar 

  • Morris, W. F. & D. F. Doak, 2002. Quantitative Conservation Biology: Theory and Practice of Population Viability Analysis. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Nichols, J. D. & W. L. Kendall, 1995. The use of multi-state capture-recapture models to address questions in evolutionary ecology. Journal of Applied Statistics 22: 835–846.

    Article  Google Scholar 

  • Noda, T., 1999. Within- and between- patch variability of predation intensity on the mussel Mytilus trossulus Gould on a rocky intertidal shore in Oregon, USA. Ecological Research 14: 193–203.

    Article  Google Scholar 

  • Palmer, A. R., 1985. Genetic basis of shell variation in Thais emarginata (Prosobranchia, muricacea). I. Banding in populations from Vancouver Island. The Biological Bulletin 169: 638–651.

    Article  Google Scholar 

  • Quinn, T. P., 2005. The Behavior and Ecology of Pacific Salmon and Trout. University of Washington Press, Seattle.

    Google Scholar 

  • Ryer, C. H., J. L. Lemke, K. Boersma & S. Levas, 2008. Adaptive coloration, behavior and predation vulnerability in three juvenile north Pacific flatfishes. Journal of Experimental Marine Biology and Ecology 359: 62–66.

    Article  Google Scholar 

  • Sheppard, P. M., 1951. Fluctuations in the selective value of certain phenotypes in the polymorphic land snail Cepæa nemoraus. Heredity 5: 125–134.

    Article  CAS  PubMed  Google Scholar 

  • Stevens, M., C. A. Parraga, I. C. Cuthill, J. C. Partridge & T. S. Troscianko, 2007. Using digital photography to study animal coloration. Biological Journal of the Linnean Society 90: 211–237.

    Article  Google Scholar 

  • Tallmon, D. A., E. S. Jules, N. J. Radke & L. S. Mills, 2003. Of mice and men and trillium: cascading effects of forest fragmentation. Ecological Applications 13: 1193–1203.

    Article  Google Scholar 

  • White, G. C. & K. P. Burnham, 1999. Program MARK: survival estimation from populations of marked animals. Bird Study 46(Supplement): 120–138.

    Google Scholar 

  • Whiteley, A. R., S. M. Gende, A. J. Gharrett & D. A. Tallmon, 2009. Background matching and color change plasticity in colonizing freshwater sculpin populations following rapid deglaciation. Evolution 63: 1519–1529.

    Article  PubMed  Google Scholar 

  • Wootton, J. T., 2002. Mechanisms of successional dynamics: consumers and the rise and fall of species dominance. Ecological Research 17: 249–260.

    Article  Google Scholar 

  • Zach, R., 1978. Selection and dropping of whelks by Northwestern crows. Behaviour 67: 134–147.

    Article  Google Scholar 

Download references

Acknowledgments

While working on this research, R. P. K. was supported by an Alaska EPSCoR Graduate Research Fellowship. The University of Alaska Southeast NSF Research Experience for Undergraduates program helped to support this research. We thank the many individuals from the Tallmon lab who helped in collecting snails. Finally, we thank Mark S. Lindberg who provided many insightful comments during capture–mark–recapture analyses and Tasman Crowe and one anonymous reviewer for their comments on earlier versions of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan P. Kovach.

Additional information

Handling editor: T. P. Crowe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovach, R.P., Tallmon, D.A. Strong influence of microhabitat on survival for an intertidal snail, Nucella lima . Hydrobiologia 652, 49–56 (2010). https://doi.org/10.1007/s10750-010-0317-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-010-0317-5

Keywords

Navigation