Skip to main content
Log in

Water nutrient concentrations in channels in relation to occurrence of aquatic plants: a case study in eastern Croatia

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In this paper we analyzed nutrient concentration in the channels of eastern Croatia and investigated whether certain plant species and associations can be used as direct estimators of water quality. One hundred and twenty-two channel sites were visited and water samples taken for laboratory analysis (pH and concentrations of sulfate, chloride, ammonium, nitrate, and total phosphorus). At each site, macrophyte vegetation was recognized and its occurrence recorded. Three groups of analyses were performed: (a) principal component analysis to describe habitat characteristics of the investigated channels, (b) stepwise regression analysis to build estimation models for nutrient concentrations, and (c) geostatistical analysis including fitting of variograms and interpolation of values over the whole area of interest. High values of water nutrients in the eastern Croatian channels were reported (90% intervals): 5.3–29.4 for nitrates, 27.8–54.2 for sulfates, 0.1–0.4 for total P, and 0.18–0.34 mg l−1 for ammonium. Water nutrient concentrations can be successfully mapped over the channel network in eastern Croatia using geostatistics (regression kriging). The nutrient concentration variables required log transformation prior to regression or variogram analysis because their distributions were distinctly skewed towards lower values. Species were found to be a more successful estimator of nutrient concentrations than plant associations. In all cases, species had a higher adjusted R-square value, ranging from 0.302 (ammonium) to 0.485 (sulfates). Additional load of nutrients in water could lead to the disappearance of the more-sensitive species Lemna trisulca, Riccia fluitans, and Ricciocarpus natans and the spread of Potamogeton pectinatus, Glyceria maxima, and Glyceria fluitans. Further studies are needed to develop strategies for incorporating permanent monitoring networks to observe environmental changes and succession of vegetation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • American Public Health Association (APHA) 1998. Standard Methods for the Examination of Water and Wastewater, 19th ed. In Greenberg, A. E., L. S. Clesceri & A. D. Eaton (eds), Washington, DC.

  • Baattrup-Pedersen, A. & T. Riis, 1999. Macrophyte diversity and composition in relation to substratum characteristics in regulated and unregulated Danish streams. Freshwater Biology 42: 375–385.

    Article  Google Scholar 

  • Bini, L. M., S. M. Thomaz, K. J. Murphy & A. F. M. Camargo, 1999. Aquatic macrophyte distribution in relation to water and sediment conditions in the Itaipu Reservoir, Brazil. Hydrobiologia 415: 147–154.

    Article  Google Scholar 

  • Bouldin, J. L., J. L. Farris, M. T. Moore & C. M. Cooper, 2004. Vegetative and structural characteristics of agricultural drainages in the Mississippi Delta landscapes. Environmental Pollution 132: 403–411.

    Article  CAS  Google Scholar 

  • Braun-Blanquet, J., 1964. Pflanzensoziologie. Springer Verlag, Wien, New York.

    Google Scholar 

  • Brönmark, C. & L. A. Hansson, 1998. The Biology of Lakes and Ponds. Oxford University Press, Oxford.

    Google Scholar 

  • Carpenter, S. R., N. F. Caraco, D. L. Correll, R. W. Howarth, A. N. Sharpley & V. H. Smith, 1998. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications 8: 559–568.

    Article  Google Scholar 

  • Casper, C. J. & H. D. Krausch, 1980. Pteridophyta und Anthophyta 23/24. In Ettl H., J. Gerloff & H. Heynig (eds) Die Süßwassflora von Mitteleuropa. Gustav Fischer Verlag, Stuttgart.

    Google Scholar 

  • Daniel, H., I. Bernez & J. Haury, 2006. Relationships between macrophytic vegetation and physical features of river habitats: The need for a morphological approach. Hydrobiologia 570: 11–17.

    Article  Google Scholar 

  • Dawson, F. H. & K. Szoszkiewicz, 1999. Relationships of some ecological factors with the associations of vegetation in British rivers. Hydrobiologia 415: 117–122.

    Article  Google Scholar 

  • Demars, B. O. L. & D. M. Harper, 1998. The aquatic macrophytes of an English lowland river system: Assessing response to nutrient enrichment. Hydrobiologia 384: 75–88.

    Article  Google Scholar 

  • Guisan, A. & N. E. Zimmermann, 2000. Predictive habitat distribution models in ecology. Ecological Modelling 135: 147–186.

    Article  Google Scholar 

  • Haury, J., 1996. Assessing functional typology involving water quality, physical features and macrophytes in a Normandy river. Hydrobiologia 340: 43–49.

    Article  CAS  Google Scholar 

  • Heegaard, E., H. H. Birks, C. E. Gibson, S. J. Smith & S. Wolfe-Murphy, 2001. Species-environmental relationships of aquatic macrophytes in Northern Ireland. Aquatic Botany 70: 175–223.

    Article  Google Scholar 

  • Hengl, T., 2007. A Practical Guide to Geostatistical Mapping of Environmental Variables. EUR 22904 EN Scientific and Technical Research series, Office for Official Publications of the European Communities, Luxemburg.

  • Hengl, T., G. B. M. Heuvelink & D. G. Rossiter, 2007. About regression-kriging: From equations to case studies. Computers and Geosciences 33: 1301–1315.

    Article  Google Scholar 

  • Janauer, G. A., 2001. Is what has been measured of any direct relevance to the success of the macrophyte in its particular environment? Journal of Limnology 60: 33–38.

    Google Scholar 

  • Johnson, L. B. & S. H. Gage, 1997. Landscape approaches to the analysis of aquatic ecosystems. Freshwater Biology 37: 113–132.

    Article  Google Scholar 

  • Jongman, R. H. G., C. J. F. Ter Braak & O. F. R. Van Tongeren, 1995. Data Analysis in Community and Lanscape Ecology, 2nd ed. Cambridge University Press, Cambridge.

    Google Scholar 

  • Kohler, A., & G. Janauer, 1995. Zur Methodik der Untersuchung von Fließgewässern mit Hilfe von aquatischen Makrophyten. In Steinberg, C. E. W., H. Bernhardt & H. Klapper (eds), Handbuch Angewandte Limnologie. Ecomed: 1–22.

  • Landolt, E., 1986. Biosystematic Investigations in the Family of Duckweeds (Lemnaceae). Veröffentlichungen des Geobotanischen Institutes ETH, Stiftung Rübel, Zürich.

    Google Scholar 

  • Nurminen, L., 2003. Macrophyte species composition reflecting water quality changes in adjacent water bodies of lake Hiidenvesi. Annales Botanici Fennici 40: 199–208.

    Google Scholar 

  • OECD, 1982. Eutrophication of Waters: Monitoring, Assessments and Control. Organisation for Economic Cooperation & Development, Paris.

    Google Scholar 

  • Parsons, J., 2001. Aquatic Plant Sampling Protocols. Environmental Assessment Program Olympia, Washington State Department of Ecology, Washington.

    Google Scholar 

  • Peterson, E. E., A. A. Merton, D. M. Theobald & N. S. Urquhart, 2006. Patterns of spatial autocorrelation in stream water chemistry. Environmental Monitoring and Assessment 121: 571–596.

    CAS  Google Scholar 

  • Preston, C. D., 1995. Pondweeds of Great Britain and Ireland. BSBI Handbook No 8. Botanical Society of the British Isles, London.

    Google Scholar 

  • Riis, T. & K. Sand-Jensen, 2001. Historical changes in species composition and richness accompanying perturbation and eutrophication of Danish lowland streams over 100 years. Freshwater Biology 46: 269–280.

    Article  Google Scholar 

  • Riis, T. & K. Sand-Jensen, 2002. Abundance-range size relationships in stream vegetation in Denmark. Plant Ecology 161: 175–183.

    Article  Google Scholar 

  • Riis, T., K. Sand-Jensen & S. E. Larsen, 2001. Plant distribution and abundance in relation to physical conditions and location within Danish stream systems. Hydrobiologia 448: 217–228.

    Article  Google Scholar 

  • Sand-Jensen, K., M. F. Pedersen & S. L. Nielsen, 1992. Photosynthetic use of inorganic carbon among primary and secondary water plants in streams. Freshwater Biology 27: 283–293.

    Article  Google Scholar 

  • Sauquet, E., 2006. Mapping mean annual river discharges: Geostatistical developments for incorporating river network dependencies. Journal of Hydrology 331: 300–314.

    Article  Google Scholar 

  • Schneider, S. & A. Melzer, 2003. The trophic index of macrophytes (TIM), a new tool for indicating the trophic status of running waters. International Revue Hydrobiologie 88: 49–67.

    Article  Google Scholar 

  • Smith, R. A., G. E. Schwartz & R. B. Alexander, 1997. Regional interpretation of water-quality monitoring data. Water Resources Research 33: 2781–2798.

    Article  CAS  Google Scholar 

  • Szańkowski, M. & S. Klosowski, 1999. Habitat conditions of nymphaeid associations in Poland. Hydrobiologia 415: 177–185.

    Article  Google Scholar 

  • Thiébaut, G. & S. Muller, 1999. A macrophyte communities sequence as an indicator of eutrophication and acidification levels in weakly mineralised streams in north-eastern France. Hydrobiologia 410: 17–24.

    Article  Google Scholar 

  • Toivonen, H., 1985. Changes in the pleustic macrophyte flora of 54 small Finnish lakes in 54 years. Annales Botanici Fennici 22: 33–44.

    Google Scholar 

  • Topić, J., 1989. Vegetation of the Special Zoological Reserve of Kopački Rit. Hydrobiologia 182: 149–160.

    Article  Google Scholar 

  • Tremp, H., 2007. Spatial and environmental effects on hydrophytic macrophyte occurrence in the Upper Rhine floodplain (Germany). Hydrobiologia 586: 167–177.

    Article  Google Scholar 

  • Tutin, T. G., V. H. Heywood, N. A. Burges, D. M. Moore, D. H. Valentine, S. M. Walters & D. H. Webb (eds), 1968–1993. Flora Europaea, Vol. 1–5. Cambridge University Press, Cambridge.

  • Wetzel, R. G., 2001. Limnology: Lake and River Ecosystems, 3rd ed. Academic Press.

  • Yuan, L. L., 2004. Using spatial interpolation to estimate stressor levels in unsampled streams. Environmental Monitoring and Assessment 94: 23–38.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge to S. M. Thomaz and two anonymous reviewers for constructive and helpful comments and Jadranka Zlomislić, MA and Rebecca Javorsky for significantly improving the English version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandra Kočić.

Additional information

Handling editor: S. M. Thomaz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kočić, A., Hengl, T. & Horvatić, J. Water nutrient concentrations in channels in relation to occurrence of aquatic plants: a case study in eastern Croatia. Hydrobiologia 603, 253–266 (2008). https://doi.org/10.1007/s10750-007-9276-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-007-9276-x

Keywords

Navigation