Skip to main content

Advertisement

Log in

The use of transcriptomic biomarkers for personalized medicine

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Microarrays are a high throughput technology that allows the quantification of tens of thousands of RNA transcripts in a single reaction. This new technology offers the promise of comprehensive study of disease at a genomic level, potentially identifying novel molecular abnormalities, developing novel clinical biomarkers, and investigating drug efficacy. The ability to develop a molecular profile corresponding to a therapeutic effect is the basis for the concept of drug repositioning. With regard to prediction of clinical events, microarray technology has the potential to contribute to the development of sophisticated new biomarkers useful as predictors of disease etiology, outcome, and responsiveness to therapy—so-called personalized medicine. Currently progress in the field is hampered by a degree of skepticism about the reliability of microarray data and its relevance for clinical applications. Here we discuss possible pitfalls of transcriptomic analysis, review current developments in the cardiovascular area and address the use of transcriptomics for clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Archacki S, Wang Q (2004) Expression profiling of cardiovascular disease. Hum Genomics 1:355–370

    PubMed  CAS  Google Scholar 

  2. Southern E, Mir K, Shchepinov M (1999) Molecular interactions on microarrays. Nat Genet 21:5–9

    Article  PubMed  CAS  Google Scholar 

  3. Barlaan EA, Sugimori M, Furukawa S, Takeuchi K (2005) Electronic microarray analysis of 16S rDNA amplicons for bacterial detection. J Biotechnol 115:11–21

    Article  PubMed  CAS  Google Scholar 

  4. Zimmermann K, Eiter T, Scheiflinger F (2003) Consecutive analysis of bacterial PCR samples on a single electronic microarray. J Microbiol Methods 55:471–474

    Article  PubMed  CAS  Google Scholar 

  5. Eiter T, Zimmermann K, Scheiflinger F (2002) Analysis of the detection limit on a microelectronic array. Biotechniques 33:494, 496

    Google Scholar 

  6. Edman CF, Raymond DE, Wu DJ, Tu E, Sosnowski RG, Butler WF et al (1997) Electric field directed nucleic acid hybridization on microchips. Nucleic Acids Res 25:4907–4914

    Article  PubMed  CAS  Google Scholar 

  7. ’t Hoen PA, Turk R, Boer JM, Sterrenburg E, de Menezes RX, van Ommen GJ et al (2004) Intensity-based analysis of two-colour microarrays enables efficient and flexible hybridization designs. Nucleic Acids Res 32:e41

    Article  PubMed  CAS  Google Scholar 

  8. Patterson TA, Lobenhofer EK, Fulmer-Smentek SB, Collins PJ, Chu TM, Bao W et al (2006) Performance comparison of one-color and two-color platforms within the MicroArray Quality Control (MAQC) project. Nat Biotechnol 24:1140–1150

    Article  PubMed  CAS  Google Scholar 

  9. Pozhitkov A, Noble PA, Domazet-Loso T, Nolte AW, Sonnenberg R, Staehler P et al (2006) Tests of rRNA hybridization to microarrays suggest that hybridization characteristics of oligonucleotide probes for species discrimination cannot be predicted. Nucleic Acids Res 34:e66

    Article  PubMed  Google Scholar 

  10. Alizadeh A, Eisen M, Davis RE, Ma C, Sabet H, Tran T et al (1999) The lymphochip: a specialized cDNA microarray for the genomic-scale analysis of gene expression in normal and malignant lymphocytes. Cold Spring Harb Symp Quant Biol 64:71–78

    Article  PubMed  CAS  Google Scholar 

  11. Barrans JD, Stamatiou D, Liew C (2001) Construction of a human cardiovascular cDNA microarray: portrait of the failing heart. Biochem Biophys Res Commun 280:964–969

    Article  PubMed  CAS  Google Scholar 

  12. Sonenberg N, Pause A (2006) Signal transduction. Protein synthesis and oncogenesis meet again. Science 314:428–429

    Article  PubMed  CAS  Google Scholar 

  13. Iborra FJ, Jackson DA, Cook PR (2000) The path of RNA through nuclear pores: apparent entry from the sides into specialized pores. J Cell Sci 113(Pt 2):291–302

    PubMed  CAS  Google Scholar 

  14. Tan PK, Downey TJ, Spitznagel EL Jr, Xu P, Fu D, Dimitrov DS et al (2003) Evaluation of gene expression measurements from commercial microarray platforms. Nucleic Acids Res 31:5676–5684

    Article  PubMed  CAS  Google Scholar 

  15. Brenner S (1999) Sillycon valley fever. Curr Biol 9:R671

    Article  PubMed  CAS  Google Scholar 

  16. Liang P (2000) Tutorial: gene discovery using differential display—Method analyzes differences in gene expression. Genet Eng News 20:37

    Google Scholar 

  17. Cooper S (2002) Cell cycle analysis and microarrays. Trends Genet 18:289–290

    Article  PubMed  CAS  Google Scholar 

  18. Couzin J (2006) Genomics. Microarray data reproduced, but some concerns remain. Science 313:1559

    Article  PubMed  CAS  Google Scholar 

  19. [Anon] (2006) Making the most of microarrays. Nat Biotechnol 24:1039

  20. Shi L, Reid LH, Jones WD, Shippy R, Warrington JA, Baker SC et al (2006) The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat Biotechnol 24:1151–1161

    Article  PubMed  CAS  Google Scholar 

  21. Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C et al (2001) Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet 29:365–371

    Article  PubMed  CAS  Google Scholar 

  22. Kittleson MM, Hare JM (2005) Molecular signature analysis: using the myocardial transcriptome as a biomarker in cardiovascular disease. Trends Cardiovasc Med 15:130–138

    Article  PubMed  CAS  Google Scholar 

  23. Michelle M, Kittleson JMH (2005) Molecular signature analysis: the potential of gene-expression analysis in cardiomyopathy. Future Med 1:793–798

    Google Scholar 

  24. Hwang JJ, Allen PD, Tseng GC, Lam CW, Fananapazir L, Dzau VJ et al (2002) Microarray gene expression profiles in dilated and hypertrophic cardiomyopathic end-stage heart failure. Physiol Genomics 10:31–44

    PubMed  CAS  Google Scholar 

  25. Grzeskowiak R, Witt H, Drungowski M, Thermann R, Hennig S, Perrot A et al (2003) Expression profiling of human idiopathic dilated cardiomyopathy. Cardiovasc Res 59:400–411

    Article  PubMed  CAS  Google Scholar 

  26. Yung CK, Halperin VL, Tomaselli GF, Winslow RL (2004) Gene expression profiles in end-stage human idiopathic dilated cardiomyopathy: altered expression of apoptotic and cytoskeletal genes. Genomics 83:281–297

    Article  PubMed  CAS  Google Scholar 

  27. Roy S, Khanna S, Kuhn DE, Rink C, Williams WT, Zweier JL et al (2006) Transcriptome analysis of the ischemia-reperfused remodeling myocardium: temporal changes in inflammation and extracellular matrix. Physiol Genomics 25:364–374

    Article  PubMed  CAS  Google Scholar 

  28. Kittleson MM, Minhas KM, Irizarry RA, Ye SQ, Edness G, Breton E et al (2005) Gene expression analysis of ischemic and nonischemic cardiomyopathy: shared and distinct genes in the development of heart failure. Physiol Genomics 21:299–307

    Article  PubMed  CAS  Google Scholar 

  29. Shyamsundar R, Kim YH, Higgins JP, Montgomery K, Jorden M, Sethuraman A et al (2005) A DNA microarray survey of gene expression in normal human tissues. Genome Biol 6:R22

    Article  PubMed  Google Scholar 

  30. Lowes BD, Zolty R, Minobe WA, Robertson AD, Leach S, Hunter L et al (2006) Serial gene expression profiling in the intact human heart. J Heart Lung Transplant 25:579–588

    Article  PubMed  Google Scholar 

  31. Kaynak B, von HA, Mebus S, Seelow D, Hennig S, Vogel J et al (2003) Genome-wide array analysis of normal and malformed human hearts. Circulation 107:2467–2474

    Article  PubMed  Google Scholar 

  32. van’t Veer LJ, Dai H, van de Vijver V, He YD, Hart AA, Bernards R et al (2003) Expression profiling predicts outcome in breast cancer. Breast Cancer Res 5:57–58

    Article  Google Scholar 

  33. Shipp MA, Ross KN, Tamayo P, Weng AP, Kutok JL, Aguiar RC et al (2002) Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med 8:68–74

    Article  PubMed  CAS  Google Scholar 

  34. Leung SY, Chen X, Chu KM, Yuen ST, Mathy J, Ji J et al (2002) Phospholipase A2 group IIA expression in gastric adenocarcinoma is associated with prolonged survival and less frequent metastasis. Proc Natl Acad Sci U S A 99:16203–16208

    Article  PubMed  CAS  Google Scholar 

  35. Rosenwald A, Wright G, Leroy K, Yu X, Gaulard P, Gascoyne RD et al (2003) Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma. J Exp Med 198:851–862

    Article  PubMed  CAS  Google Scholar 

  36. Rosenwald A, Wright G, Chan WC, Connors JM, Campo E, Fisher RI et al (2002) The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med 346:1937–1947

    Article  PubMed  Google Scholar 

  37. Bullinger L, Dohner K, Bair E, Frohling S, Schlenk RF, Tibshirani R et al (2004) Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J Med 350:1605–1616

    Article  PubMed  CAS  Google Scholar 

  38. Valk PJ, Verhaak RG, Beijen MA, Erpelinck CA, Barjesteh van Waalwijk van Doorn-Khosrovani, Boer JM et al (2004) Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med 350:1617–1628

    Article  PubMed  CAS  Google Scholar 

  39. Dhanasekaran SM, Barrette TR, Ghosh D, Shah R, Varambally S, Kurachi K et al (2001) Delineation of prognostic biomarkers in prostate cancer. Nature 412:822–826

    Article  PubMed  CAS  Google Scholar 

  40. Calin GA, Ferracin M, Cimmino A, Di LG, Shimizu M, Wojcik SE et al (2005) A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353:1793–1801

    Article  PubMed  CAS  Google Scholar 

  41. Lapointe J, Li C, Higgins JP, van de Rijn RM, Bair E, Montgomery K et al (2004) Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc Natl Acad Sci U S A 101:811–816

    Article  PubMed  CAS  Google Scholar 

  42. Pomeroy SL, Tamayo P, Gaasenbeek M, Sturla LM, Angelo M, McLaughlin ME et al (2002) Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415:436–442

    Article  PubMed  CAS  Google Scholar 

  43. Eshaque B, Dixon B (2006) Technology platforms for molecular diagnosis of cystic fibrosis. Biotechnol Adv 24:86–93

    Article  PubMed  CAS  Google Scholar 

  44. Salvado CS, Trounson AO, Cram DS (2004) Towards preimplantation diagnosis of cystic fibrosis using microarrays. Reprod Biomed Online 8:107–114

    Article  PubMed  CAS  Google Scholar 

  45. Kittleson MM, Ye SQ, Irizarry RA, Minhas KM, Edness G, Conte JV et al (2004) Identification of a gene expression profile that differentiates between ischemic and nonischemic cardiomyopathy. Circulation 110:3444–3451

    Article  PubMed  CAS  Google Scholar 

  46. Mukherjee S, Tamayo P, Rogers S, Rifkin R, Engle A, Campbell C et al (2003) Estimating dataset size requirements for classifying DNA microarray data. J Comput Biol 10:119–142

    Article  PubMed  CAS  Google Scholar 

  47. Seo D, Wang T, Dressman H, Herderick EE, Iversen ES, Dong C et al (2004) Gene expression phenotypes of atherosclerosis. Arterioscler Thromb Vasc Biol 24:1922–1927

    Article  PubMed  CAS  Google Scholar 

  48. Jensen KB, Watt FM (2006) Single-cell expression profiling of human epidermal stem and transit-amplifying cells: Lrig1 is a regulator of stem cell quiescence. Proc Natl Acad Sci U S A 103:11958–11963

    Article  PubMed  CAS  Google Scholar 

  49. Barth AS, Hare JM (2006) The potential for the transcriptome to serve as a clinical biomarker for cardiovascular diseases. Circ Res 98:1459–1461

    Article  PubMed  CAS  Google Scholar 

  50. Nakhleh RE, Jones J, Goswitz JJ, Anderson EA, Titus J (1992) Correlation of endomyocardial biopsy findings with autopsy findings in human cardiac allografts. J Heart Lung Transplant 11:479–485

    PubMed  CAS  Google Scholar 

  51. Morgun A, Shulzhenko N, Perez-Diez A, Diniz RV, Sanson GF, Almeida DR et al (2006) Molecular profiling improves diagnoses of rejection and infection in transplanted organs. Circ Res 98:e74–e83

    Article  PubMed  CAS  Google Scholar 

  52. Liew CC, Ma J, Tang HC, Zheng R, Dempsey AA (2006) The peripheral blood transcriptome dynamically reflects system wide biology: a potential diagnostic tool. J Lab Clin Med 147:126–132

    Article  PubMed  CAS  Google Scholar 

  53. Twine NC, Stover JA, Marshall B, Dukart G, Hidalgo M, Stadler W et al (2003) Disease-associated expression profiles in peripheral blood mononuclear cells from patients with advanced renal cell carcinoma. Cancer Res 63:6069–6075

    PubMed  CAS  Google Scholar 

  54. Deprimo SE, Wong LM, Khatry DB, Nicholas SL, Manning WC, Smolich BD et al (2003) Expression profiling of blood samples from an SU5416 Phase III metastatic colorectal cancer clinical trial: a novel strategy for biomarker identification. BMC Cancer 3:3

    Article  PubMed  Google Scholar 

  55. Wessendorf S, Schwaenen C, Kohlhammer H, Kienle D, Wrobel G, Barth TFE et al (2003) Hidden gene amplifications in aggressive B-cell non-Hodgkin lymphomas detected by microarray-based comparative genomic hybridization. Oncogene 22:1425–1429

    Article  PubMed  CAS  Google Scholar 

  56. Evans RW, Williams GE, Baron HM, Deng MC, Eisen HJ, Hunt SA et al (2005) The economic implications of noninvasive molecular testing for cardiac allograft rejection. Am J Transplant 5:1553–1558

    Article  PubMed  Google Scholar 

  57. Deng MC, Eisen HJ, Mehra MR, Billingham M, Marboe CC, Berry G et al (2006) Noninvasive discrimination of rejection in cardiac allograft recipients using gene expression profiling. Am J Transplant 6:150–160

    Article  PubMed  CAS  Google Scholar 

  58. Horwitz PA, Tsai EJ, Putt ME, Gilmore JM, Lepore JJ, Parmacek MS et al (2004) Detection of cardiac allograft rejection and response to immunosuppressive therapy with peripheral blood gene expression. Circulation 110:3815–3821

    Article  PubMed  CAS  Google Scholar 

  59. Deng MC, Eisen HJ, Mehra MR (2006) Methodological challenges of genomic research—the CARGO study. Am J Transplant 6:1086–1087

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua M. Hare.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heidecker, B., Hare, J.M. The use of transcriptomic biomarkers for personalized medicine. Heart Fail Rev 12, 1–11 (2007). https://doi.org/10.1007/s10741-007-9004-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-007-9004-7

Keywords

Navigation