Skip to main content
Log in

S-Nitrosylation of secreted recombinant human glypican-1

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Glypican-1 is a glycosylphosphatidylinositol anchored cell surface S-nitrosylated heparan sulfate proteoglycan that is processed by nitric oxide dependent degradation of its side chains. Cell surface-bound glypican-1 becomes internalized and recycles via endosomes, where the heparan sulphate chains undergo nitric oxide and copper dependent autocleavage at N-unsubstituted glucosamines, back to the Golgi. It is not known if the S-nitrosylation occurs during biosynthesis or recycling of the protein. Here we have generated a recombinant human glypican-1 lacking the glycosylphosphatidylinositol-anchor. We find that this protein is directly secreted into the culture medium both as core protein and proteoglycan form and is not subjected to internalization and further modifications during recycling. By using SDS-PAGE, Western blotting and radiolabeling experiments we show that the glypican-1 can be S-nitrosylated. We have measured the level of S-nitrosylation in the glypican-1 core protein by biotin switch assay and find that the core protein can be S-nitrosylated in the presence of copper II ions and NO donor. Furthermore the glypican-1 proteoglycan produced in the presence of polyamine synthesis inhibitor, α-difluoromethylornithine, was endogenously S-nitrosylated and release of nitric oxide induced deaminative autocleavage of the HS side chains of glypican-1. We also show that the N-unsubstituted glucosamine residues are formed during biosynthesis of glypican-1 and that the content increased upon inhibition of polyamine synthesis. It cannot be excluded that endogenous glypican-1 can become further S-nitrosylated during recycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DFMO:

α-Difluoromethylornithine

GAG:

Glycosaminoglycans

GlcNH +3 :

N-unsubstituted glucosamine

Gpc-1:

Glypican-1

GPI:

Glycosylphosphatidylinositol

HS:

Heparan sulfate

mAb:

Monoclonal antibody

NO:

Nitric oxide

PG:

Proteoglycan

SNO:

Nitrosothiol

SNP:

Sodium nitroprusside dihydrate

References

  1. Belting, M.: Heparan sulfate proteoglycan as a plasma membrane carrier. Trends. Biochem. Sci. 28, 145–151 (2003). doi:10.1016/S0968-0004(03)00031-8

    Article  CAS  PubMed  Google Scholar 

  2. Fransson, L.-Å., Belting, M., Cheng, F., Jonsson, M., Mani, K., Sandgren, S.: Novel aspects of glypican glycobiology. Cell Mol. Life Sci. 61, 1016–1024 (2004). doi:10.1007/s00018-004-3445-0

    Article  CAS  PubMed  Google Scholar 

  3. Bernfield, M., Gotte, M., Park, P.W., Reizes, O., Fitzgerald, M.L., Lincecum, J., Zako, M.: Functions of cell surface heparan sulfate proteoglycans. Annu. Rev. Biochem. 68, 729–777 (1999). doi:10.1146/annurev.biochem.68.1.729

    Article  CAS  PubMed  Google Scholar 

  4. David, G., Lories, V., Decock, B., Marynen, P., Cassiman, J.J., Van den Berghe, H.: Molecular cloning of a phosphatidylinositol-anchored membrane heparan sulfate proteoglycan from human lung fibroblasts. J. Cell Biol. 111, 3165–3176 (1990). doi:10.1083/jcb.111.6.3165

    Article  CAS  PubMed  Google Scholar 

  5. Hess, D.T., Matsumoto, A., Kim, S.O., Marshall, H.E., Stamler, J.S.: Protein S-nitrosylation: purview and parameters. Nat. Rev. Mol. Cell Biol. 6, 150–166 (2005). doi:10.1038/nrm1569

    Article  CAS  PubMed  Google Scholar 

  6. Greco, T.M., Hodara, R., Parastatidis, I., Heijnen, H.F., Dennehy, M.K., Liebler, D.C., Ischiropoulos, H.: Identification of S-nitrosylation motifs by site-specific mapping of the S-nitrosocysteine proteome in human vascular smooth muscle cells. Proc. Natl. Acad. Sci. U. S. A. 103, 7420–7425 (2006). doi:10.1073/pnas.0600729103

    Article  CAS  PubMed  Google Scholar 

  7. Ding, K., Mani, K., Cheng, F., Belting, M., Fransson, L.Å.: Copper-dependent autocleavage of glypican-1 heparan sulfate by nitric oxide derived from intrinsic nitrosothiols. J. Biol. Chem. 277, 33353–33360 (2002). doi:10.1074/jbc.M203383200

    Article  CAS  PubMed  Google Scholar 

  8. Mani, K., Cheng, F., Havsmark, B., Jonsson, M., Belting, M., Fransson, L.-Å.: Prion, amyloid beta-derived Cu(II) ions, or free Zn(II) ions support S-nitroso-dependent autocleavage of glypican-1 heparan sulfate. J. Biol. Chem. 278, 38956–38965 (2003). doi:10.1074/jbc.M300394200

    Article  CAS  PubMed  Google Scholar 

  9. Cappai, R., Cheng, F., Ciccotosto, G.D., Needham, B.E., Masters, C.L., Multhaup, G., Fransson, L.-Å., Mani, K.: The amyloid precursor protein (APP) of Alzheimer disease and its paralog, APLP2, modulate the Cu/Zn-Nitric Oxide-catalyzed degradation of glypican-1 heparan sulfate in vivo. J. Biol. Chem. 280, 13913–13920 (2005). doi:10.1074/jbc.M409179200

    Article  CAS  PubMed  Google Scholar 

  10. Cheng, F., Lindqvist, J., Haigh, C.L., Brown, D.R., Mani, K.: Copper-dependent co-internalization of the prion protein and glypican-1. J. Neurochem. 98, 1445–1457 (2006). doi:10.1111/j.1471-4159.2006.03981.x

    Article  CAS  PubMed  Google Scholar 

  11. Mani, K., Jonsson, M., Edgren, G., Belting, M., Fransson, L.-Å.: A novel role for nitric oxide in the endogenous degradation of heparan sulfate during recycling of glypican-1 in vascular endothelial cells. Glycobiology 10, 577–586 (2000). doi:10.1093/glycob/10.6.577

    Article  CAS  PubMed  Google Scholar 

  12. Cheng, F., Mani, K., van den Born, J., Ding, K., Belting, M., Fransson, L.-Å.: Nitric oxide-dependent processing of heparan sulfate in recycling S-nitrosylated glypican-1 takes place in caveolin-1-containing endosomes. J. Biol. Chem. 277, 44431–44439 (2002). doi:10.1074/jbc.M205241200

    Article  CAS  PubMed  Google Scholar 

  13. Mani, K., Cheng, F., Fransson, L.-Å.: Defective nitric oxide-dependent, deaminative cleavage of glypican-1 heparan sulfate in Niemann-Pick C1 fibroblasts. Glycobiology 16, 711–718 (2006). doi:10.1093/glycob/cwj121

    Article  CAS  PubMed  Google Scholar 

  14. Ding, K., Sandgren, S., Mani, K., Belting, M., Fransson, L.-Å.: Modulations of glypican-1 heparan sulfate structure by inhibition of endogenous polyamine synthesis. Mapping of spermine-binding sites and heparanase, heparin lyase, and nitric oxide/nitrite cleavage sites. J. Biol. Chem. 276, 46779–46791 (2001). doi:10.1074/jbc.M105419200

    Article  CAS  PubMed  Google Scholar 

  15. Westling, C., Lindahl, U.: Location of N-unsubstituted glucosamine residues in heparan sulfate. J. Biol. Chem. 277, 49247–49255 (2002). doi:10.1074/jbc.M209139200

    Article  CAS  PubMed  Google Scholar 

  16. Belting, M., Mani, K., Jonsson, M., Cheng, F., Sandgren, S., Jonsson, S., Ding, K., Delcros, J.G., Fransson, L.-Å.: Glypican-1 is a vehicle for polyamine uptake in mammalian cells: a pivital role for nitrosothiol-derived nitric oxide. J. Biol. Chem. 278, 47181–47189 (2003). doi:10.1074/jbc.M308325200

    Article  CAS  PubMed  Google Scholar 

  17. Bengtsson, E., Aspberg, A., Heinegard, D., Sommarin, Y., Spillmann, D.: The amino-terminal part of PRELP binds to heparin and heparan sulfate. J. Biol. Chem. 275, 40695–40702 (2000). doi:10.1074/jbc.M007917200

    Article  CAS  PubMed  Google Scholar 

  18. Mani, K., Cheng, F., Sandgren, S., Van Den Born, J., Havsmark, B., Ding, K., Fransson, L.-Å.: The heparan sulfate-specific epitope 10E4 is NO-sensitive and partly inaccessible in glypican-1. Glycobiology 14, 599–607 (2004). doi:10.1093/glycob/cwh067

    Article  CAS  PubMed  Google Scholar 

  19. Jaffrey, S.R., Snyder, S.H.: The biotin switch method for the detection of S-nitrosylated proteins. Sci STKE., Issue 86 p. pl 1 (2001). doi:10.1126/stke.2001.86.pl1

  20. Shively, J.E., Conrad, H.E.: Formation of anhydrosugars in the chemical depolymerization of heparin. Biochemistry 15, 3932–3942 (1976). doi:10.1021/bi00663a005

    Article  CAS  PubMed  Google Scholar 

  21. Lindahl, U., Bäckström, G., Jansson, L., Hallen, A.: Biosynthesis of heparin. II. Formation of sulfamino groups. J. Biol. Chem. 248, 7234–7241 (1973)

    CAS  PubMed  Google Scholar 

  22. Ramamurthy, P., Hocking, A.M., McQuillan, D.J.: Recombinant decorin glycoforms. Purification and structure. J. Biol. Chem. 271, 19578–19584 (1996). doi:10.1074/jbc.271.32.19578

    Article  CAS  PubMed  Google Scholar 

  23. Ding, K., Jonsson, M., Mani, K., Sandgren, S., Belting, M., Fransson, L.-Å.: N-unsubstituted glucosamine in heparan sulfate of recycling glypican-1 from suramin-treated and nitrite-deprived endothelial cells. Mapping of nitric oxide/nitrite-susceptible glucosamine residues to clustered sites near the core protein. J. Biol. Chem. 276, 3885–3894 (2001). doi:10.1074/jbc.M005238200

    Article  CAS  PubMed  Google Scholar 

  24. Sessa, W.C., Garcia-Cardena, G., Liu, J., Keh, A., Pollock, J.S., Bradley, J., Thiru, S., Braverman, I.M., Desai, K.M.: The Golgi association of endothelial nitric oxide synthase is necessary for the efficient synthesis of nitric oxide. J. Biol. Chem. 270, 17641–17644 (1995). doi:10.1074/jbc.270.30.17641

    Article  CAS  PubMed  Google Scholar 

  25. Ghosh, D.K., Rashid, M.B., Crane, B., Taskar, V., Mast, M., Misukonis, M.A., Weinberg, J.B., Eissa, N.T.: Characterization of key residues in the subdomain encoded by exons 8 and 9 of human inducible nitric oxide synthase: a critical role for Asp-280 in substrate binding and subunit interactions. Proc. Natl Acad. Sci. USA 98, 10392–10397 (2001). doi:10.1073/pnas.181251298

    Article  CAS  PubMed  Google Scholar 

  26. McBride, P.A., Wilson, M.I., Eikelenboom, P., Tunstall, A., Bruce, M.E.: Heparan sulfate proteoglycan is associated with amyloid plaques and neuroanatomically targeted PrP pathology throughout the incubation period of scrapie-infected mice. Exp. Neurol. 149, 447–454 (1998). doi:10.1006/exnr.1997.6740

    Article  CAS  PubMed  Google Scholar 

  27. Leteux, C., Chai, W., Nagai, K., Herbert, C.G., Lawson, A.M., Feizi, T.: 10E4 antigen of Scrapie lesions contains an unusual nonsulfated heparan motif. J. Biol. Chem. 276, 12539–12545 (2001). doi:10.1074/jbc.M010291200

    Article  CAS  PubMed  Google Scholar 

  28. Liu, J., Shriver, Z., Pope, R.M., Thorp, S.C., Duncan, M.B., Copeland, R.J., Raska, C.S., Yoshida, K., Eisenberg, R.J., Cohen, G., et al.: Characterization of a heparan sulfate octasaccharide that binds to herpes simplex virus type 1 glycoprotein D. J. Biol. Chem. 277, 33456–33467 (2002). doi:10.1074/jbc.M202034200

    Article  CAS  PubMed  Google Scholar 

  29. Xia, G., Chen, J., Tiwari, V., Ju, W., Li, J.P., Malmström, A., Shukla, D., Liu, J.: Heparan sulfate 3-O-sulfotransferase isoform 5 generates both an antithrombin-binding site and an entry receptor for herpes simplex virus, type 1. J. Biol. Chem. 277, 37912–37919 (2002). doi:10.1074/jbc.M204209200

    Article  CAS  PubMed  Google Scholar 

  30. Löfgren, K., Cheng, F., Fransson, L.-Å., Bedecs, K., Mani, K.: Involvement of glypican-1 autoprocessing in scrapie infection. Eur. J. NeuroSci. 28, 964–972 (2008). doi:10.1111/j.1460-9568.2008.06386.x

    Article  PubMed  Google Scholar 

  31. Mani, K., Cheng, F., Fransson, L.-Å.: Heparan sulfate degradation products can associate with oxidized proteins and proteasomes. J. Biol. Chem. 282, 21934–21944 (2007). doi:10.1074/jbc.M701200200

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. Lars-Åke Fransson, Department of Experimental Medical Science, Lund University, for advice. The work was supported by grants from the Swedish Science Council (VR-M), The Royal physiographic society, and the Crafoord, Hedborg, Kock, Segerfalk, Zoegas and Jeanssons Foundations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrin Mani.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 58 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svensson, G., Mani, K. S-Nitrosylation of secreted recombinant human glypican-1. Glycoconj J 26, 1247–1257 (2009). https://doi.org/10.1007/s10719-009-9243-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-009-9243-z

Keywords

Navigation