Skip to main content

Advertisement

Log in

Energetic Charged Particles Above Thunderclouds

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

The French government has committed to launch the satellite TARANIS to study transient coupling processes between the Earth’s atmosphere and near-Earth space. The prime objective of TARANIS is to detect energetic charged particles and hard radiation emanating from thunderclouds. The British Nobel prize winner C.T.R. Wilson predicted lightning discharges from the top of thunderclouds into space almost a century ago. However, new experiments have only recently confirmed energetic discharge processes which transfer energy from the top of thunderclouds into the upper atmosphere and near-Earth space; they are now denoted as transient luminous events, terrestrial gamma-ray flashes and relativistic electron beams. This meeting report builds on the current state of scientific knowledge on the physics of plasmas in the laboratory and naturally occurring plasmas in the Earth’s atmosphere to propose areas of future research. The report specifically reflects presentations delivered by the members of a novel Franco-British collaboration during a meeting at the French Embassy in London held in November 2011. The scientific subjects of the report tackle ionization processes leading to electrical discharge processes, observations of transient luminous events, electromagnetic emissions, energetic charged particles and their impact on the Earth’s atmosphere. The importance of future research in this area for science and society, and towards spacecraft protection, is emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abel B, Thorne R (1998) Electron scattering loss in Earth’s inner magnetosphere 1. Dominant physical processes. J Geophys Res 103:2385–2396. doi:10.1029/97JA02919

    Article  Google Scholar 

  • Allen J, Phelps A (1977) Waves and microinstabilities in plasmas—linear effects. Rep Prog Phys 40:1305–1368. doi:10.1088/0034-4885/40/11/002

    Article  Google Scholar 

  • Babich L, Donskoy E, Kutsyk I, Roussel-Dupré R (2004) Characteristics of a relativistic electron avalanche in air. Doklady Phys 49:35–38. doi:10.1134/1.1648089

    Article  Google Scholar 

  • Baker D, Kanekal S, Horne R, Meredith N, Glauert SA (2007) Low-altitude measurements of 26 MeV electron trapping lifetimes at 1.5 ≤ L ≤ 2.5. Geophys Res Lett 34:1–5. doi:10.1029/2007GL031007

    Google Scholar 

  • Barrington-Leigh C, Inan U, Stanley M (2001) Identification of sprites and elves with intensified video and broadband array photometry. J Geophys Res 106:1741–1750. doi:10.1029/2000JA000073

    Article  Google Scholar 

  • Becker K, Schoenbach K, Eden J (2006) Microplasmas and applications. J Phys D: Appl Phys 39:R55–R70. doi:10.1088/0022-3727/39/3/R01

    Article  Google Scholar 

  • Blanc E, Farges T, Roche R, Brebion D, Hua T, Labarthe A, Melnikov V (2004) Nadir observations of sprites from the International Space Station. J Geophys Res 109:1–8. doi:10.1029/2003JA009972

    Article  Google Scholar 

  • Blanc E, Farges T, Brebion D, Labarthe A, Melnikov V (2006) Observations of sprites at the nadir; the LSO (lightning and sprite observations) experiment on board of the International Space Station. In: Füllekrug M, Mareev E, Rycroft M (eds) Sprites elves, intense lightning discharges, vol NATO Science Series II, 225. Springer, Dordrecht

  • Blanc E, Lefeuvre F, Roussel-Dupré R, Sauvaud J (2007) TARANIS: a microsatellite project dedicated to the study of impulsive transfers of energy between the earth atmosphere, the ionosphere, and the magnetosphere. Adv Space Res 40:1268–1275. doi:10.1016/j.asr.2007.06.037

    Article  Google Scholar 

  • Boccippio D, Williams E, Heckman S, Lyons W, Baker I, Boldi R (1995) Sprites, ELF transients, and positive ground strokes. Science 269:1088–1091. doi:10.1126/science.269.5227.1088

    Article  Google Scholar 

  • Boeck W, Vaughan O, Blakeslee R, Vonnegut B, Brook M (1992) Lightning induced brightening in the airglow layer. Geophys Res Lett 19:99–102. doi:10.1029/91GL03168

    Article  Google Scholar 

  • Bonaventura Z, Bourdon A, Celestin S, Pasko V (2011) Electric field determination in streamer discharges in air at atmospheric pressure. Plasma Sources Sci Technol 20:1–11. doi:10.1088/0963-0252/20/3/035012

  • Briggs M, Connaughton V, Wilson-Hodge C, Preece R, Fishman G, Kippen R, Bhat P, Paciesas W, Chaplin V, Meegan C, von Kienlin A, Greiner J, Dwyer J, Smith D (2011) Electron-positron beams from terrestrial lightning observed with Fermi GBM. Geophys Res Lett 38:1–5. doi:10.1029/2010GL046259

    Article  Google Scholar 

  • Bryers C, Kosch M, Senior A, Rietveld M, Yeoman T (2012) EISCAT observations of pump-enhanced plasma temperature and optical emission excitation rate as a function of power flux. J Geophys Res 117:1–12. doi:10.1029/2012JA017897

    Article  Google Scholar 

  • Cansi Y (1995) An automatic seismic event processing for detection and location: the P.M.C.C method. Geophys Res Lett 22:1021–1024. doi:10.1029/95GL00468

    Article  Google Scholar 

  • Carlson B, Lehtinen N, Inan U (2009) Observations of terrestrial gamma-ray flash electrons. In: Crosby N, Huang T, Rycroft M (eds) Coupling of thunderstorms and lightning discharges to near-Earth space. American Institute of Physics, Melville, pp 84–91

    Google Scholar 

  • Carlson B, Gjesteland T, Østgaard N (2011) Terrestrial gamma ray flash electron beam geometry, fluence, and detection frequency. J Geophys Res 116:1–7. doi:10.1029/2011JA016812

    Article  Google Scholar 

  • Celestin S, Pasko V (2010) Effects of spatial non-uniformity of streamer discharges on spectroscopic diagnostics of peak electric fields in transient luminous events. Geophys Res Lett 37:1–15. doi:10.1029/2010JA016260

    Article  Google Scholar 

  • Celestin S, Pasko V (2011) Energy and fluxes of thermal runaway electrons produced by exponential growth of streamers during the stepping of lightning leaders and in transient luminous events. J Geophys Res 116:1–14. doi:10.1029/2010JA016260

    Article  Google Scholar 

  • Celestin S, Pasko V (2012) Compton scattering effects on the duration of terrestrial gamma ray flashes. J Geophys Res 39:1–9. doi:10.1029/2011GL050342

    Google Scholar 

  • Chanrion O, Neubert T (2010) Production of runaway electrons by negative streamer discharges. J Geophys Res 115:1–10. doi:10.1029/2009JA014774

    Google Scholar 

  • Chisham G, Lester M, Milan S, Freeman M, Bristow W, Grocott A, MacWilliams K, Ruohoniemi J, Yeoman T, Dyson P, Greenwald R, Kikuchi T, Pinnock M, Rash J, Sato N, Sofko G, Villain J, Walker A (2007) A decade of the super dual auroral radar network (SuperDARN): scientific achievements, new techniques and future directions. Surv Geophys 28:33–109. doi:10.1007/s10712-007-9017-8

    Article  Google Scholar 

  • Cohen M, Inan U, Said R, Briggs M, Fishman G, Connaughton V, Cummer S (2010) A lightning discharge producing a beam of relativistic electrons into space. Geophys Res Lett 37:1–4. doi:10.1029/2010GL044481

    Google Scholar 

  • Cummer S, Inan U (2000) Modeling ELF radio atmospheric propagation and extracting lightning currents from ELF observations. Radio Sci 35:385–394. doi:10.1029/1999RS002184

    Article  Google Scholar 

  • Cummer S, Lu G, Briggs M, Connaughton V, Xiong S, Fishman G, Dwyer J (2011) Geophys Res Lett 38:1–6. doi:10.1029/2011GL048099

    Article  Google Scholar 

  • De Larquier S, Pasko V (2010) Mechanism of inverted-chirp infrasonic radiation from sprites. Geophys Res Lett 37:1–5. doi:10.1029/2010GL045304

    Google Scholar 

  • Delprat N, Escudié B, Guillemain P, Kronland-Martinet R, Tchamitchian P, Torrésani B (1992) Asymptotic wavelet and Gabor analysis: extraction of instantaneous frequencies. IEEE Trans Inform Theory 38:644–664. doi:10.1109/18.119728

    Article  Google Scholar 

  • Desch S, Cuzzi J (2000) The generation of lightning in the solar nebula. Icarus 143:87–105. doi:10.1006/icar.1999.6245

    Article  Google Scholar 

  • Dowds B, Barrett R, Diver D (2003) Streamer initiation in atmospheric pressure gas discharges by direct particle simulation. Phys Rev E 68:1–9. doi:10.1103/PhysRevE.68.026412

    Google Scholar 

  • Dwyer J (2003) A fundamental limit on electric fields in air. Geophys Res Lett 30:2055–2058. doi:10.1029/2003GL017781

    Article  Google Scholar 

  • Dwyer J (2010) Diffusion of relativistic runaway electrons and implications for lightning initiation. J Geophys Res 115:1–11. doi:10.1029/2009JA014504

    Google Scholar 

  • Dwyer J (2012) The relativistic feedback discharge model of terrestrial gamma ray flashes. J Geophys Res 117:1–25. doi:10.1029/2011JA017160

    Google Scholar 

  • Dwyer J, Grefenstette B, Smith D (2008) High-energy electron beams launched into space by thunderstorms. Geophys Res Lett 35:1–5. doi:10.1029/2007GL032430

    Article  Google Scholar 

  • Dwyer J, Uman M, Rassoul H (2009) Remote measurements of thundercloud electrostatic fields. J Geophys Res 114:1–19. doi:10.1029/2008JD011386

    Article  Google Scholar 

  • Dwyer J, Smith D, Cummer S (2012) High-energy atmospheric physics: terrestrial gamma-ray flashes and related phenomena. Space Sci Rev 167:1–64. doi:10.1007/s11214-012-9894-0

    Article  Google Scholar 

  • Ebert U, Nijdam S, Li C, Luque A, Briels T, van Veldhuizen E (2010) Review of recent results on streamer discharges and their relevance for sprites and lightning. J Geophys Res 115:1–13. doi:10.1029/2009JA014867

    Google Scholar 

  • Farges T, Blanc E (2010) Characteristics of infrasound from lightning and sprites near thunderstorm areas. J Geophys Res 115:1–17. doi:10.1029/2009JA014700

    Google Scholar 

  • Farges T, Blanc E, Pichon AL, Neubert T, Allin T (2005) Identification of infrasound produced by sprites during the Sprite2003 campaign. Geophys Res Lett 32:1–4. doi:10.1029/2004GL021212

    Article  Google Scholar 

  • Farrell W, Desch M (1992) Cloud-to-stratosphere lightning discharges: a radio emission model. Geophys Res Lett 19:665–668. doi:10.1029/91GL02955

    Article  Google Scholar 

  • Fishman G, Bhat P, Mallozzi R, Horack J, Koshut T, Kouveliotou C, Pendleton G, Meegan C, Wilson R, Paciesas W, Goodman S, Christian H (1994) Discovery of intense gamma-ray flashes of atmospheric origin. Science 264:1313–1316. doi:10.1126/science.264.5163.1313

    Article  Google Scholar 

  • Franz R, Nemzek R, Winckler J (1990) Television image of a large upward electrical discharge above a thunderstorm system. Science 249:48–51. doi:10.1126/science.249.4964.48

    Article  Google Scholar 

  • Fridman A, Chirokov A, Gutsol A (2005) Non-thermal atmospheric pressure discharges. J Phys D: Appl Phys 38:1–24. doi:10.1088/0022-3727/38/2/R01

    Article  Google Scholar 

  • Fukunishi H, Takahashi Y, Kubota M, Sakanoi K, Inan U, Lyons W (1996) Elves: lightning-induced transient luminous events in the lower ionosphere. Geophys Res Lett 23:2157–2160. doi:10.1029/96GL01979

    Article  Google Scholar 

  • Füllekrug M, Rycroft M (2006) The contribution of sprites to the global atmospheric electric circuit. Earth Planets Space 58:1193–1196

    Google Scholar 

  • Füllekrug M, Mareev E, Rycroft M (eds) (2006) Sprites, elves and intense lightning discharges. Springer, Dordrecht

    Google Scholar 

  • Füllekrug M, Roussel-Dupré R, Symbalisty M, Chanrion O, Odzimek A, van der Velde O, Neubert T (2010) Relativistic runaway breakdown in low frequency radio. J Geophys Res 115:1–10. doi:10.1029/2009JA014468

    Article  Google Scholar 

  • Füllekrug M, Hanuise C, Parrot M (2011a) Experimental simulation of satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds. Atmos Chem Phys 11:1–7. doi:10.5194/acp-11-1-2011

    Google Scholar 

  • Füllekrug M, Roussel-Dupré R, Symbalisty E, Colman J, Chanrion O, Soula S, van der Velde O, Odzimek A, Bennett A, Pasko V, Neubert T (2011b) Relativistic electron beams above thunderclouds. Atmospheric Chemistry and Physics 11:7747–7754. doi:10.5194/acp-11-7747-2011

    Article  Google Scholar 

  • Gauld J, Yeoman T, Davies J, Milan S, Honary F (2002) SuperDARN radar HF propagation and absorption response to the substorm expansion phase. Annales Geophysicae 20:1631–1645. doi:10.5194/angeo-20-1631-2002

    Article  Google Scholar 

  • Gemelos E, Inan U, Walt M, Parrot M, Sauvaud J (2009) Seasonal dependence of energetic electron precipitation: evidence for a global role of lightning. Geophys Res Lett 36:1–5. doi:10.1029/2009GL040396

    Article  Google Scholar 

  • Gillespie K, Speirs D, Ronald K, McConville L, Phelps A, Bingham R, Cross A, Robertson C, Whyte C, He W, Vorgul I, Cairns R, Kellett B (2008) 3D PiC code simulations for a laboratory experimental investigation of auroral kilometric radiation mechanisms. Plasma Phys Cont Fusion 50:1–12. doi:10.1088/0741-3335/50/12/124038

    Google Scholar 

  • Ginzburg N, Sergeev A, Zotova I, Novozhilova Y, Peskov N, Konoplev I, Phelps A, Cross A, Cooke S, Aitken P, Shpak V, Yalandin M, Shunailov C, Ulmaskulov M (1997) Experimental observation of superradiance in millimeter-wave band. Nuclear instruments and methods in physics research section A—accelerators, spectrometers, detectors and associated equipment 393:352–355. doi:10.1016/S0168-9002(97)00509-3

    Article  Google Scholar 

  • Ginzburg N, Peskov N, Sergeev A, Konoplev I, Cross A, Phelps A, Robb G, Ronald K, He W, Whyte C (2002a) Theory of free-electron maser with two-dimensional distributed feedback driven by an annular electron beam. J Appl Phys 92:1619–1629. doi:10.1063/1.1481193

    Article  Google Scholar 

  • Ginzburg N, Peskov N, Sergeev A, Phelps A, Cross A, Konoplev I (2002b) The use of a hybrid resonator consisting of one-dimensional and two-dimensional Bragg reflectors for generation of spatially coherent radiation in a coaxial free-electron laser. Phys Plasmas 9:2798–2802. doi:10.1063/1.1476664

    Article  Google Scholar 

  • Gurevich A, Zybin K (2005) Runaway breakdown and the mysteries of lightning. Phys Today 58:37–43. doi:10.1063/1.1995746

    Article  Google Scholar 

  • Gurevich A, Milikh G, Roussel-Dupré R (1992) Runaway electron mechanism of air breakdown and preconditioning during a thunderstorm. Phys Lett A 165:463–468. doi:10.1016/0375-9601(92)90348-P

    Article  Google Scholar 

  • Gurevich A, Duncan L, Karashtin A, Zybin K (2003) Radio emission of lightning initiation. Phys Lett A 312:228–237. doi:10.1016/S0375-9601(03)00511-5

    Article  Google Scholar 

  • Gustavsson B, Sergienko T, Kosch M, Rietveld M, Brändström B, Leyser T, Isham B, Gallop P, Aso T, Ejiri M, Grydeland T, LaHoz C, Kaila K, Jussila J, Holma H (2005) The electron energy distribution during HF pumping, a picture painted with all colors. Ann Geophys 23:1747–1754. doi:10.5194/angeo-23-1747-2005

    Article  Google Scholar 

  • Harrison R, Nicoll K, Ulanowski Z, Mather T (2010) Self-charging of the Eyjafjallajökull volcanic ash plume. Environ Res Lett 5:1–4. doi:10.1088/1748-9326/5/2/024004

    Google Scholar 

  • Helling C, Woitke P (2006) Dust in brown dwarfs—V. Growth and evaporation of dirty dust grains. Astron Astrophys 455:325–H4. doi:10.1051/0004-6361:20054598

    Article  Google Scholar 

  • Helling C, Dehn M, Woitke P, Hauschildt P (2008a) Consistent simulations of substellar atmospheres and nonequilibrium dust cloud formation. Astrophys J Lett 675:105–108. doi:10.1086/533462

    Article  Google Scholar 

  • Helling C, Woitke P, Thi W (2008b) Dust in brown dwarfs and extra-solar planets—I. Chemical composition and spectral appearance of quasi-static cloud layers. Astron Astrophys 485:547–560. doi:10.1051/0004-6361:20078220

    Article  Google Scholar 

  • Helling C, Jardine M, Mokler F (2011a) Ionization in atmospheres of brown dwarfs and extrasolar planets. II: Dust-induced collisional ionization. Astrophys J 737:1–11. doi:10.1088/0004-637X/737/1/38

    Google Scholar 

  • Helling C, Jardine M, Witte S, Diver D (2011b) Ionization in atmospheres of brown dwarfs and extrasolar planets. I. The role of electron avalanche. Astrophys J 727:1–6. doi:10.1088/0004-637X/727/1/4

    Google Scholar 

  • Helliwell R (1965) Whistlers and related ionospheric phenomena. Stanford University Press, California

    Google Scholar 

  • Hess W (1963) The artificial radiation belt made on July 9, 1962. J Geophys Res 68:667–683. doi:10.1029/JZ068i003p00667

    Article  Google Scholar 

  • Hibbens R, Freeman M, Milan S, Ruohoniemi J (2011) Winds and tides in the mid-latitude Southern hemisphere upper atmosphere recorded with the Falkland Islands SuperDARN radar. Ann Geophys 29:1985–1996. doi:10.5194/angeo-29-1985-2011

    Article  Google Scholar 

  • Honary F, Robinson T, Wright D, Stocker A, Rietveld M, McCrea I (1999) First direct observations of the reduced striations at pump frequencies close to the electron gyroharmonics. Ann Geophys 17:1235–1238. doi:10.1007/s005850050848

    Google Scholar 

  • Honary F, Marple S, Barratt K, Chapman P, Grill M, Nielsen E (2011) Digital beam-forming imaging riometer systems. Rev Sci Instrum 82:1–15. doi:10.1063/1.3567309

    Article  Google Scholar 

  • Hosokawa K, Ogawa T, Arnold N, Lester M, Sato N, Yukimatu A (2005) Extraction of polar mesosphere summer echoes from SuperDARN data. Geophys Res Lett 32:1–4. doi:10.1029/2005GL022788

    Article  Google Scholar 

  • Ignaccolo M, Farges T, Mika A, Allin T, Chanrion O, Blanc E, Neubert T, Fraser-Smith A, Füllekrug M (2006) The planetary rate of sprite events. Geophys Res Lett 33:1–4

    Article  Google Scholar 

  • Inan U, Bell T, Bortnik J, Albert J (2003) Controlled precipitation of radiation belt electrons. J Geophys Res 108:1186. doi:10.1029/2002JA009580

    Article  Google Scholar 

  • Inan U, Piddyachiy D, Peter W, Sauvaud J, Parrot M (2007) DEMETER satellite observations of lightning-induced electron precipitation. Geophys Res Lett 34:1–5. doi:10.1029/2006GL029238

    Google Scholar 

  • Jarvis M, Hibbins R, Taylor M, Rosenberg T (2003) Utilizing riometry to observe gravity waves in the sunlit mesosphere. Geophys Res Lett 30:1–4. doi:10.1029/2003GL017885

    Article  Google Scholar 

  • Kavanagh A, Kosch M, Honary F, Senior A, Marple S, Woodfield E, McCrea I (2004) The statistical dependence of auroral absorption on geomagnetic and solar wind parameters. Ann Geophys 22:877–887. doi:10.5194/angeo-22-877-2004

    Article  Google Scholar 

  • Kosch M, Rietveld M, Hagfors T, Leyser T (2000) High-latitude HF-induced airglow displaced equatorwards of the pump beam. Geophys Res Lett 27:2817–2820. doi:10.1029/2000GL003754

    Article  Google Scholar 

  • Kosch M, Honary F, del Pozo C, Marple S, Hagfors T (2001) High-resolution mapping of the characteristic energy of precipitating auroral particles. J Geophys Res 106:28925–28937. doi:10.1029/2001JA900107

    Article  Google Scholar 

  • Kosch M, Rietveld M, Kavanagh A, Davis C, Yeoman T, Honary F, Hagfors T (2002) High-latitude pump-induced optical emissions for frequencies close to the third electron gyro-harmonic. Geophys Res Lett 29:2112–2115. doi:10.1029/2002GL015744

    Article  Google Scholar 

  • Kosch M, Pedersen T, Rietveld M, Gustavsson B, Grach S, Hagfors T (2007a) Artificial optical emissions in the high-latitude thermosphere induced by powerful radio waves: an observational review. Adv Space Res 40:365–376. doi:10.1016/j.asr.2007.02.061

    Article  Google Scholar 

  • Kosch M, Pedersen T, Mishin E, Oyama S, Hughes J, Senior A, Watkins B, Bristow B (2007b) Coordinated optical and radar observations of ionospheric pumping for a frequency pass through the second electron gyroharmonic at HAARP. J Geophys Res 112:1–13. doi:10.1029/2006JA012146

    Google Scholar 

  • Kosch M, Ogawa Y, Rietveld M, Nozawa S, Fujii R (2010) An analysis of pump-induced artificial ionospheric ion upwelling at EISCAT. J Geophys Res 115:1–9. doi:10.1029/2010JA015854

    Google Scholar 

  • Kosch M, Yiu I, Anderson C, Tsuda T, Ogawa Y, Nozawa S, Aruliah A, Howells V, Baddeley L, McCrea I, Wild J (2011) Mesoscale observations of Joule heating near an auroral arc and ion-neutral collision frequency in the polar cap E region. J Geophys Res 116:1–16. doi:10.1029/2010JA016015

    Google Scholar 

  • Krehbiel P, Riousset J, Pasko V, Thomas R, Rison W, Stanley M, Edens H (2008) Upward electrical discharges from thunderstorms. Nat Geosci 1:233–237. doi:10.1038/ngeo162

    Article  Google Scholar 

  • Le Bihan N, Sangwine S (2003) Quaternion principal component analysis of color images. IEEE Int Conf Image Proc 1:809–812

    Google Scholar 

  • Lefeuvre F, Blanc E, Pinçon J, Roussel-Dupré R, Lawrence D, Sauvaud J, Rauch J, Feraudy H, Lagoutte D (2008) TARANIS—a satellite project dedicated to the physics of TLEs and TGFs. Space Sci Rev 137:301–315. doi:10.1007/s11214-008-9414-4

    Article  Google Scholar 

  • Lefeuvre F, Marshall R, Pinçon J, Inan U, Lagoutte D, Parrot M, Berthelier J (2009) On remote sensing of transient luminous events’ parent lightning discharges by ELF/VLF wave measurements on board a satellite. J Geophys Res 114:1–13. doi:10.1029/2009JA014154

    Article  Google Scholar 

  • Lehtinen N, Bell T, Inan U (1999) Monte Carlo simulation of runaway MeV electron breakdown with application to red sprites and terrestrial gamma ray flashes. J Geophys Res 104:24699–24712. doi:10.1029/1999JA900335

    Article  Google Scholar 

  • Lester M (2008) SuperDARN: a network approach to geospace science in the 21st century. J Atmos Solar Terr Phys 70:2309–2323. doi:10.1016/j.jastp.2008.08.003

    Article  Google Scholar 

  • Li C, Ebert U, Hundsdorfer W (2012) Spatially hybrid computations for streamer discharges: II. Fully 3D simulations. J Comput Phys 231:1020–1050. doi:10.1016/j.jcp.2011.07.023

    Article  Google Scholar 

  • Liszka L (2004) On the possible infrasound generation by sprites. J Low Freq Noise Vib Act Control 23:85–93. doi:10.1260/0263092042869838

    Article  Google Scholar 

  • Liszka L, Hobara Y (2006) Sprite-attributed infrasonic chirps—their detection, occurrence and properties between 1994 and 2004. J Atmos Solar Terr Phys 68:1179–1188. doi:10.1016/j.jastp.2006.02.016

    Article  Google Scholar 

  • Liu N, Pasko V (2004) Effects of photoionization on propagation and branching of positive and negative streamers in sprites. J Geophys Res 109. doi:10.1029/2003JA010064

  • Lu G, Cummer S, Li J, Han F, Smith D, Grefenstette B (2011) Characteristics of broadband lightning emissions associated with terrestrial gamma ray flashes. J Geophys Res 116:1–12. doi:10.1029/2010JA016141

    Google Scholar 

  • Lyons L, Thorne R, Kennel C (1972) Pitch-angle diffusion of radiation belt electrons within the plasmasphere. J Geophys Res 77:3455. doi:10.1029/JA077i019p03455

    Article  Google Scholar 

  • MacGorman D, Rust W (1998) The electrical nature of storms. Oxford University Press, New York

    Google Scholar 

  • MacLachlan C, Diver D, Potts H (2009) The evolution of electron overdensities in magnetic fields. New J Phys 11:1–20. doi:10.1088/1367-2630/11/6/063001

    Google Scholar 

  • Mallat S (2009) A wavelet tour of signal processing. The sparse way. Third edition. With contributions from Gabriel Peyré. Elsevier, Academic Press, Amsterdam

    Google Scholar 

  • Marshall R (2012) An improved model of the lightning electromagnetic field interaction with the D-region ionosphere. J Geophys Res 117:1–15. doi:10.1029/2011JA017408

    Google Scholar 

  • Marshall T, McCarthy M, Rust W (1995) Electric field magnitudes and lightning initiation in thunderstorms. J Geophys Res 100:7097–7103. doi:10.1029/95JD00020

    Article  Google Scholar 

  • Massines F, Rabehi A, Decomps P, Ben Gadri R, Ségur P, Mayoux C (1998) Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier. J Appl Phys 83:2950–2957. doi:10.1063/1.367051

    Article  Google Scholar 

  • Mather T, Harrison R (2006) Electrification of volcanic plumes. Surv Geophys 27:387–432. doi:10.1007/s10712-006-9007-2

    Article  Google Scholar 

  • McConville S, Speirs D, Ronald K, Phelps A, Cross A, Bingham R, Robertson C, Whyte C, He W, Gillespie K, Vorgul I, Cairns R, Kellett B (2008) Demonstration of auroral radio emission mechanisms by laboratory experiment. Plasma Phys Cont Fusion 50:1–13. doi:10.1088/0741-3335/50/7/074010

    Google Scholar 

  • Mende S, Chang Y, Chen A, Frey H, Fukunishi H, Geller S, Harris S, Heetderks H, Hsu R, Lee L, Su H, Takahashi Y (2006) Spacecraft based studies of transient luminous events. In: Füllekrug M, Mareev E, Rycroft M (eds) Sprites, elves and intense lightning discharges, vol NATO Science Series II, 225. Springer, Dordrecht

  • Meredith N, Horne R, Glauert S, Baker D, Kanekal S, Albert J (2009) Relativistic electron loss timescales in the slot region. J Geophys Res 114:1–16. doi:10.1029/2008JA013889

    Google Scholar 

  • Milan S, Davies J, Lester M (1999) Coherent HF radar backscatter characteristics associated with auroral forms identified by incoherent radar techniques. J Geophys Res 104:22591–22603. doi:10.1029/1999JA900277

    Article  Google Scholar 

  • Miron S, Le Bihan N, Mars J (2006) Quaternion-MUSIC for vector-sensor array processing. IEEE Trans Signal Process 54:1218–1229. doi:10.1109/TSP.2006.870630

    Article  Google Scholar 

  • Moss G, Pasko V, Liu N, Veronis G (2006) Monte Carlo model for analysis of thermal runaway electrons in streamer tips in transient luminous events and streamer zones of lightning leaders. J Geophys Res 111:1–37. doi:10.1029/2005JA011350

    Article  Google Scholar 

  • Neubert T, Rycroft M, Farges T, Blanc E, Chanrion O, Arnone E, Odzimek A, Arnold N, Enell C, Turunen E, Bösinger T, Mika A, Haldoupis C, Steiner R, Van der Velde O, Soula S, Berg P, Boberg F, Thejll P, Christiansen B, Ignaccolo M, Füllekrug M, Verronen P, Montanya J, Crosby N (2008) Recent results from studies of electric discharges in the mesosphere. Surv Geophys 29:71–137. doi:10.1007/s10712-008-9043-1

    Article  Google Scholar 

  • Nguyen C, van Deursen A, van Heesch E, Winands G, Pemen JM (2010) X-ray emission in streamer-corona plasma. J Phys D: Appl Phys 43:1–5. doi:10.1088/0022-3727/43/2/025202

    Google Scholar 

  • Nicoll K, Harrison R, Ulanowski Z (2011) Observations of Saharan dust layer electrification. Environ Res Lett 6:1–7. doi:10.1088/1748-9326/6/1/014001

    Google Scholar 

  • Nijdam S, van der Wetering F, Blanc R, van Veldhuizen E, Ebert U (2010) Probing photo-ionization: experiments on positive streamers in pure gases and mixtures. J Phys D: Appl Phys 43:1–16. doi:10.1088/0022-3727/43/14/145204

    Google Scholar 

  • Odzimek A, Kubicki M, Lester M, Grocott A (2011) Relation between the SuperDARN ionospheric potential and ground electric field at polar station Hornsund. In: Proceedings of the 14th international conference on atmospheric electricity (ICAE), vol 115, pp 1–22. doi:10.1029/2009JD013341

  • Ogawa T, Arnold N, Kirkwood S, Nishitani N, Lester M (2003) Finland HF and Esrange MST radar observations of polar mesosphere summer echoes. Ann Geophys 21:1047–1055. doi:10.5194/angeo-21-1047-2003

    Article  Google Scholar 

  • Østgaard N, Gjesteland T, Hanson R, Collier A, Carlson B (2012) The true fluence distribution of terrestrial gamma ray flashes at satellite altitudes. J Geophys Res 117:1–8. doi:10.1029/2011JA017365

    Article  Google Scholar 

  • Pai D, Lacoste D, Laux C (2010) Transitions between corona, glow, and spark regimes of nanosecond repetitively pulsed discharges in air at atmospheric pressure. J Phys D: Appl Phys 107:1–15. doi:10.1063/1.3309758

    Google Scholar 

  • Parrot M, Inan U, Lehtinen N, Pincon J (2009) Penetration of lightning MF signals to the upper ionosphere over VLF ground-based transmitters. J Geophys Res 114:1–12. doi:10.1029/2009JA014598

    Google Scholar 

  • Pasko V (2007) Red sprite discharges in the atmosphere at high altitude: the molecular physics and the similarity with laboratory discharges. Plasma Sources Science and Technology 16:13–29. doi:10.1088/0963-0252/16/1/S02

    Article  Google Scholar 

  • Pasko V (2010) Recent advances in theory of transient luminous events. J Geophys Res 115:1–24. doi:10.1029/2009JA014860

    Article  Google Scholar 

  • Pasko V, Snively J (2007) Mechanism of infrasound radiation from sprites. EOS Transactions of AGU, Fall Meeting Abstract AE23A0899, 88

  • Pasko V, Stanley M, Mathews J, Inan U, Wood T (2002) Electrical discharge from a thundercloud top to the lower ionosphere. Nature 416:152–154. doi:10.1038/416152a

    Article  Google Scholar 

  • Rakov V, Uman M (2003) Lightning, physics and effects. Cambridge University Press, Cambridge

    Google Scholar 

  • Randall C, Siskind D, Bevilacqua RM (2001) Stratospheric NOx enhancements in the southern hemisphere vortex in winter/spring of 2000. Geophys Res Lett 28:2385–2388. doi:10.1029/2000GL012746

    Article  Google Scholar 

  • Reising S, Inan U, Bell T, Lyons W (1996) Evidence for continuing currents in sprite-producing lightning flashes. Geophys Res Lett 23:3639–3642. doi:10.1029/96GL03480

    Article  Google Scholar 

  • Renard J, Brogniez C, Berthet G, Bourgeois Q, Gaubicher B, Chartier M, Balois J, Verwaerde C, Auriol F, Francois P, Daugeron D, Engrand C (2008) Vertical distribution of the different types of aerosols in the stratosphere. J Geophys Res 113:1–17. doi:10.1029/2008JD010150

    Google Scholar 

  • Renard J, Berthet G, Salazar V, Catoire V, Tagger M, Gaubicher B, Claude R (2010) In situ detection of aerosol layers in the middle stratosphere. Geophys Res Lett 37:1–5. doi:10.1029/2010GL044307

    Google Scholar 

  • Riousset J, Pasko V, Bourdon A (2010) Air-density-dependent model for analysis of air heating associated with streamers, leaders, and transient luminous events. J Geophys Res 115:1–22. doi:10.1029/2010JA015918

    Article  Google Scholar 

  • Rishbeth H, van Eyken A (1993) EISCAT: early history and the first ten years of operation. J Atmos Terr Phys 55:525–542. doi:10.1016/0021-9169(93)90002-G

    Article  Google Scholar 

  • Robinson T, Honary F, Stocker A, Jones T, Stubbe P (1996) First EISCAT observations of the modification of F-region electron temperature during heating at harmonics of the electron gyrofrequency. J Atmos Terr Phys 58:385–395. doi:10.1016/0021-9169(95)00043-7

    Article  Google Scholar 

  • Roble R (1991) On modeling component processes in the Earth’s global electric circuit. J Atmos Terr Phys 53:831–847. doi:10.1016/0021-9169(91)90097-Q

    Article  Google Scholar 

  • Ronald K, Speirs D, McConville S, Gillespie K, Phelps A, Bingham R, Vorgul I, Cairns R, Cross A, Robertson C, Whyte C, He W, Kellett B (2011) Auroral magnetospheric cyclotron emission processes: numerical and experimental simulations. Plasma Phys Cont Fusion 53:1–11. doi:10.1088/0741-3335/53/7/074015

    Google Scholar 

  • Roussel-Dupré R, Gurevich A (1996) On runaway breakdown and upward propagating discharges. J Geophys Res 101:2297–2311. doi:10.1029/95JA03278

    Article  Google Scholar 

  • Roussel-Dupré R, Symbalisty E, Taranenko Y, Yukhimuk V (1998) Simulations of high-altitude discharges initiated by runaway breakdown. J Atmos Solar Terr Phys 60:917–940. doi:10.1016/S1364-6826(98)00028-5

    Article  Google Scholar 

  • Ruohoniemi J, Baker K (1998) Large-scale imaging of high-latitude convection with super dual auroral radar network HF radar observations. J Geophys Res 103:20797–20811. doi:10.1029/98JA01288

    Article  Google Scholar 

  • Rycroft M, Harrison R (2011) Electromagnetic atmosphere-plasma coupling: The global atmospheric electric circuit. Space Sci Rev (published online):1–22. doi:10.1007/s11214-011-9830-8

  • Rycroft M, Odzimek A (2010) Effects of lightning and sprites on the ionospheric potential, and threshold effects on sprite initiation, obtained using an analog model of the global atmospheric electric circuit. J Geophys Res 115:1–18. doi:10.1029/2009JA014758

    Article  Google Scholar 

  • Rycroft M, Odzimek A, Arnold N, Fullekrug M, Kulak A, Neubert T (2007) New model simulations of the global atmospheric electric circuit driven by thunderstorms and electrified shower clouds: the roles of lightning and sprites. J Atmos Solar Terr Phys 69:2485–2509 doi:10.1016/j.jastp.2007.09.004

    Article  Google Scholar 

  • Rycroft M, Harrison R, Nicoll K, Mareev E (2008) An overview of Earth’s global electric circuit and atmospheric conductivity. Space Sci Rev 137:83–105. doi:10.1007/s11214-008-9368-6

    Article  Google Scholar 

  • Rycroft M, Nicoll K, Aplin K, Harrison R (2012) Recent advances in global electric circuit coupling between the space environment and the troposphere. J Atmos Solar Terr Phys (published online):1–14. doi:10.1016/j.jastp.2012.03.015

  • Saunders C, Rimmer J (1999) The electric field alignment of ice crystals in thunderstorms. Atmos Res 51:337–343. doi:10.1016/S0169-8095(99)00018-6

    Article  Google Scholar 

  • Sauvaud J, Moreau T, Maggiolo R, Treilhou J, Jacquey C, Cros A, Coutelier J, Rouzaud J, Penou E, Gangloff M (2006) High-energy electron detection onboard DEMETER: the IDP spectrometer, description and first results on the inner belt. Planet Space Sci 54:502–511. doi:10.1016/j.pss.2005.10.019

    Article  Google Scholar 

  • Sauvaud J, Maggiolo R, Jacquey C, Parrot M, Berthelier J, Gamble R, Rodger C (2008) Radiation belt electron precipitation due to VLF transmitters: satellite observations. Geophys Res Lett 35:1–5. doi:10.1029/2008GL033194

    Article  Google Scholar 

  • Sauvaud J, Walt M, Delcourt D, Benoist C, Penou E, Chen Y, Russell C (2012) Inner radiation belt particle acceleration and energy structuring by drift resonance with ULF waves during storms. Submitted to J Geophys Res

  • Schisselé E, Guilbert J, Gaffet S, Cansi Y (2004) Accurate time-frequency-wave number analysis to study coda waves. Geophys J Int 158:577–591. doi:10.1111/j.1365-246X.2004.02211.x

    Article  Google Scholar 

  • Schisselé E, Gaffet S, Cansi Y (2005) Characterization of regional and local scattering effects from small-aperture seismic array recordings. J Seismol 9:137–149. doi:10.1007/s10950-005-8234-1

    Article  Google Scholar 

  • Sentman D, Wescott E (1993) Observations of upper atmospheric optical flashes recorded from an aircraft. Geophys Res Lett 20:2857–2860. doi:10.1029/93GL02998

    Article  Google Scholar 

  • Sentman D, Wescott E, Osborne D, Hampton D, Heavner M (1995) Preliminary results from the Sprites94 aircraft campaign: 1. Red sprites. Geophys Res Lett 22:1205–1208. doi:10.1029/95GL00583

    Article  Google Scholar 

  • Sentman D, Wescott E, Picard R, Winick J, Stenbaek-Nielsen H, Dewan E, Moudry D, Sabbas FS, Heavner M, Morrill J (2003) Simultaneous observations of mesospheric gravity waves and sprites generated by a midwestern thunderstorm. J Atmos Solar Terr Phys 65:537–500. doi:10.1016/S1364-6826(02)00328-0

    Article  Google Scholar 

  • Seppälä A, Verronen P, Clilverd M, Randall CE, Tamminen J, Sofieva V, Backman L, Kyrola E (2007) Arctic and Antarctic polar winter NOx and energetic particle precipitation in 2002–2006. Geophys Res Lett 34:1–5. doi:10.1029/2007GL029733

    Google Scholar 

  • Seppälä A, Randall C, Clilverd M, Rozanov E, Harvey V, Rodger C (2009) Geomagnetic activity and polar surface air temperature variability. J Geophys Res 114:1–10. doi:10.1029/2008JA014029

    Google Scholar 

  • Shao X, Hamlin T, Smith D (2010) A closer examination of terrestrial gamma-ray flash-related lightning processes. J Geophys Res 115:1–8. doi:10.1029/2009JA014835

    Article  Google Scholar 

  • Siingh D, Singh A, Patel R, Singh R, Singh R, Veenadhari B, Mukherjee M (2008) Thunderstorms, lightning, sprites and magnetospheric whistler-mode radio waves. Surv Geophys 29:499–551. doi:10.1007/s10712-008-9053-z

    Article  Google Scholar 

  • Siingh D, Singh R, Singh A, Kumar S, Kulkarni M, Singh K (2012) Discharges in the stratosphere and mesosphere. Space Sci Rev 169:1–49. doi:10.1007/s11214-012-9906-0

    Article  Google Scholar 

  • Slevin P, Harrison W (1975) Hollow-cathode discharge as a spectrochemical emission source. Appl Spectrosc Rev 10:201–255. doi:10.1080/05704927508085065

    Article  Google Scholar 

  • Smith D, Lopez L, Lin R, Barrington-Leigh C (2005) Terrestrial gamma-ray flashes observed up to 20 MeV. Science 307:1085–1088. doi:10.1126/science.1107466

    Article  Google Scholar 

  • Soula S, Van der Velde O, Montanyà J, Neubert T, Chanrion O, Ganot M (2009) Analysis of thunderstorm and lightning activity associated with sprites observed during the EuroSprite campaigns: two case studies. Atmos Res 91:514–528. doi:10.1016/j.atmosres.2008.06.017

    Article  Google Scholar 

  • Soula S, Van der Velde O, Palmieri J, Chanrion O, Neubert T, Montanya J, Gangneron F, Meyerfeld Y, Lefeuvre F, Lointier G (2010) Characteristics and conditions of production of transient luminous events observed over a maritime storm. J Geophys Res 115:1–14. doi:10.1029/2009JD012066

    Google Scholar 

  • Soula S, Van der Velde O, Montanya J, Huet P, Barthe C, Bor J (2011) Gigantic jets produced by an isolated tropical thunderstorm near Réunion island. J Geophys Res 116:1–14. doi:10.1029/2010JD015581

    Google Scholar 

  • Speirs D, McConville S, Gillespie K, Ronald K, Phelps A, Cross A, Bingham R, Robertson C, Whyte C, Vorgul I, Cairns R, Kellett B (2008) Numerical simulation of auroral cyclotron maser processes. Plasma Phys Cont Fusion 50:1–15. doi:10.1088/0741-3335/50/7/074011

    Google Scholar 

  • Stanley M, Shao X, Smith D, Lopez L, Pongratz M, Harlin J, Stock M, Regan A (2006) A link between terrestrial gamma-ray flashes and intracloud lightning discharges. Geophys Res Lett 33: 1–4. doi:10.1029/2005GL025537

    Article  Google Scholar 

  • Stark C, Diver D, da Costa D, Laing E (2007) Nonlinear mode coupling in pair plasmas. Astron Astrophys 476:17–30. doi:10.1051/0004-6361:20077988

    Article  Google Scholar 

  • Starks M, Quinn R, Ginet G, Albert J, Sales G, Reinisch B, Song P (2008) Illumination of the plasmasphere by terrestrial very low frequency transmitters: model validation. J Geophys Res 113:1–16. doi:10.1029/2008JA013112

    Article  Google Scholar 

  • Starks M, Bell T, Quinn R, Inan U, Piddyachiy D, Parrot M (2009) Modeling of Doppler-shifted terrestrial VLF transmitter signals observed by DEMETER. Geophys Res Lett 36:1–6. doi:10.1029/2009GL038511

    Article  Google Scholar 

  • Stubbe P (1996) Review of ionospheric modification experiments at Tromso. J Atmos Terr Phys 58:349–368. doi:10.1016/0021-9169(95)00041-0

    Article  Google Scholar 

  • Su H, Su R, Chen A, Wang Y, Hsiao W, Lai W, Lee L, Sato M, Fukunishi H (2003) Gigantic jets between a thundercloud and the ionosphere. Nature 423:974–976. doi:10.1038/nature01759

    Article  Google Scholar 

  • Tavani M, Marisaldi M, Labanti C et al. (2011) Terrestrial gamma-ray flashes as powerful particle accelerators. Phys Rev Lett 106:1–5. doi:10.1103/PhysRevLett.106.018501

    Article  Google Scholar 

  • Thorne R, Horne R (1994) Landau damping of magnetospherically reflected whistlers. J Geophys Res 99:17249–17258. doi:10.1029/94JA01006

    Google Scholar 

  • Thorne R, O’Brien T, Shprits Y, Summers D, Horne R (2005) Timescale for MeV electron microburst loss during geomagnetic storms. J Geophys Res 110:1–7. doi:10.1029/2004JA010882

    Google Scholar 

  • Townsend J (1901) The conductivity produced in gases by the motion of negatively charged ions. Philos Mag Series 6:198–227. doi:10.1080/14786440109462605

    Article  Google Scholar 

  • Trakhtengerts V, Rycroft M (2008) Whistler and Alfvén mode cyclotron masers in space, Cambridge atmospheric and space science series. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Tripathi S, Vishnoi S, Kumar S, Harrison R (2006) Computationally efficient expressions for the collision efficiency between electrically charged aerosol particles and cloud droplets. Quart J R Meteorol Soc 132:1717–1731. doi:10.1256/qj.05.125

    Article  Google Scholar 

  • Ulanowski Z, Bailey J, Lucas P, Hough J, Hirst E (2007) Alignment of atmospheric mineral dust due to electric field. Atmos Chem Phys 7:6161–6173. doi:10.5194/acp-7-6161-2007

    Article  Google Scholar 

  • Van der Velde O, Mika A, Soula S, Haldoupis C, Neubert T, Inan U (2006) Observations of the relationship between sprite morphology and in-cloud lightning processes. J Geophys Res 111:1–8. doi:10.1029/2005JD006879

    Google Scholar 

  • Van der Velde O, Montanyá J, Soula S, Pineda N, Bech J (2010) Spatial and temporal evolution of horizontally extensive lightning discharges associated with sprite-producing positive cloud-to-ground flashes in northeastern Spain. J Geophys Res 115:1–17. doi:10.1029/2009JA014773

    Google Scholar 

  • Van Veldhuizen E (2000) Electrical discharges for environmental purposes: fundamentals and applications. Nova Science, New York

    Google Scholar 

  • Vernier J, Pommereau J, Garnier A, Pelon J, Larsen N, Nielsen J, Christensen T, Cairo F, Thomason L, Leblanc T, McDermid I (2009) Tropical stratospheric aerosol layer from CALIPSO lidar observations. J Geophys Res 114:1–12. doi:10.1029/2009JD011946

    Google Scholar 

  • Wait J, Spies K (1964) Characteristics of the Earth-ionosphere wave guide for VLF radio waves, Technical Note 300, National Bureau of Standards, Boulder, Colorado, pp 1–96

  • Walt M (1964) Effects of atmospheric collisions on geomagnetically trapped electrons. J Geophys Res 69:3947–3958. doi:10.1029/JZ069i019p03947

    Article  Google Scholar 

  • Wescott E, Sentman D, Osborne D, Hampton D, Heavner M (1995) Preliminary results from the Sprites94 aircraft campaign: 2. Blue jets. Geophys Res Lett 22:1209–1212. doi:10.1029/95GL00582

    Article  Google Scholar 

  • Wilson C (1916) On some determinations of the sign and magnitude of electric discharges in lightning flashes. Proc R Soc Lond 92:555–574. doi:10.1098/rspa.1916.0040

    Article  Google Scholar 

  • Wilson C (1921) Investigations on lightning discharges and on the electric field of thunderstorms. Philos Trans R Soc Lond A 221:73–115. doi:10.1098/rsta.1921.0003

    Article  Google Scholar 

  • Wilson C (1924) The electric field of a thundercloud and some of its effects. Proc Phys Soc Lond 37:32D–37D. doi:10.1088/1478-7814/37/1/314

    Article  Google Scholar 

  • Wilson C (1929) Some thundercloud problems. J Franklin Inst 208:1–12. doi:10.1016/S0016-0032(29)90935-2

    Article  Google Scholar 

  • Witte S, Helling C, Hauschildt PH (2009) Dust in brown dwarfs and extra-solar planets II. Cloud formation for cosmologically evolving abundances. Astron Astrophys 506:1367–1380. doi:10.1051/0004-6361/200811501

    Article  Google Scholar 

  • Woitke P, Helling C (2003) Dust in brown dwarfs - II. The coupled problem of dust formation and sedimentation. Astron Astrophys 399:297–313. doi:10.1051/0004-6361:20021734

    Article  Google Scholar 

  • Xu W, Celestin S, Pasko V (2012) Source altitudes of terrestrial gamma-ray flashes produced by lightning leaders. J Geophys Res 39:1–5. doi:10.1029/2012GL051351

    Google Scholar 

  • Yair Y, Israelevich P, Devir A, Price C, Joseph J, Levin Z, Ziv B, Sternlieb A, Teller A (2004) New observations of sprites from the space shuttle. J Geophys Res 109:1–10. doi:10.1029/2003JD004497

    Article  Google Scholar 

  • Yalandin M, Shpak V, Shunailov S, Oulmaskoulov M, Ginzburg N, Zotova I, Novozhilova Y, Sergeev A, Phelps A, Cross A, Wiggins S, Ronald K (2000) Generation of powerful subnanosecond microwave pulses in the range of 38-150 GHz. IEEE Trans Plasma Sci 28:1615–1619. doi:10.1109/27.901243

    Article  Google Scholar 

Download references

Acknowledgments

This review was prepared for a meeting at the French Embassy in London, November 17–18, 2011, to establish a novel Franco-British collaboration centred on the satellite TARANIS. The invitees are grateful to the French Embassy for sponsoring and hosting this meeting in the most professional way. MF is supported by the Natural Environment Research Council (NERC) under grant NE/H024921/1, ADRP is supported by the EPSRC under grant EP/G04239X/1. ChH acknowledges an ERC starting grant from the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Füllekrug.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Füllekrug, M., Diver, D., Pinçon, JL. et al. Energetic Charged Particles Above Thunderclouds. Surv Geophys 34, 1–41 (2013). https://doi.org/10.1007/s10712-012-9205-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-012-9205-z

Keywords

Navigation