Skip to main content

Advertisement

Log in

Monitoring Flood and Discharge Variations in the Large Siberian Rivers From a Multi-Satellite Technique

  • Original Paper
  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Using a multi-satellite method, employing passive and active microwave along with visible and infrared observations developed to estimate monthly inundation extent at global scale, this study investigates the response of river discharge to seasonal flood change in the large Siberian watersheds. The seasonal cycle and variations of inundation extent over the Ob, the Yenissey, and the Lena basins for the period 1993–2000 show different spatial and temporal behaviors due to different climate and permafrost conditions. Using in-situ discharges collected at the outlets of the three basins, we analyze and quantify the relationships between the river streamflow and the monthly satellite-derived inundation extent during the spring/summer periods. Furthermore, we analyze extreme (high/low) streamflow cases for some years and the associated inundation conditions for the three watersheds and link these cases with other climatic parameters such as the snow water equivalent, temperatures, and precipitation. The results of this study demonstrate that the monthly multi-satellite-derived inundation dataset brings a new useful tool for better understanding both the streamflow processes and the description of the snow-inundation-runoff relations in data scarce areas like the remote Arctic river basins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Aagaard K, Carmack EC (1989) The role of sea ice and other fresh water in the Arctic circulation. J Geophys Res 94(C10):14485–14498. doi:10.1029/JC094iC10p14485

    Google Scholar 

  • Alsdorf DE, Lettenmaier DP (2003) Tracking fresh water from space. Science 301:1492–1494. doi:10.1126/science.1089802

    Article  Google Scholar 

  • Alsdorf DE, Rodrıìguez E, Lettenmaier DP (2007) Measuring surface water from space. Rev Geophys 45:RG2002. doi:10.1029/2006RG000197

    Article  Google Scholar 

  • Arctic-RIMS (2007) A regional, integrated, hydrological monitoring system for the Pan-Arctic land mass. http://rims.unh.edu/

  • Armstrong RL, Brodzik MJ (2001) Recent Northern Hemisphere snow extent: a comparison of data derived from visible and microwave sensors. Geophys Res Lett 28(19):3673–3676. doi:10.1029/2000GL012556

    Article  Google Scholar 

  • Armstrong RL, Brodzik MJ (2002) Hemispheric-scale comparison and evaluation of passive microwave snow algorithms. Ann Glaciol 34:38–44. doi:10.3189/172756402781817428

    Article  Google Scholar 

  • Armstrong RL, Brodzik MJ (2005) Northern Hemisphere EASE-Grid weekly snow cover and sea ice extent version 3. National Snow and Ice Data Center, Boulder

    Google Scholar 

  • Bousquet P, Ciais P, Miller JB, Dlugokencky EJ, Hauglustaine DA, Prigent C et al (2006) Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature 443:439–443. doi:10.1038/nature05132

    Article  Google Scholar 

  • Cao Z, Wang M, Proctor B, Strong G, Stewart R, Ritchie H et al (2002) On the physical process associated with water budget and discharge over the Mackenzie basin during 1994/95 water year. Atmos Ocean 40(2):125–143. doi:10.3137/ao.400204

    Article  Google Scholar 

  • Chang ATC (1997) Snow parameters derived from microwave measurements during the BOREAS winter field campaign. J Geophys Res 102(24):29663–29671. doi:10.1029/96JD03327

    Google Scholar 

  • Chang ATC, Foster JL, Hall DK (1987) Nimbus-07 SMMR derived global snow cover parameters. Ann Glaciol 9:39–44

    Google Scholar 

  • Coe MT (2000) Modeling terrestrial hydrological systems at the continental scale: Testing the accuracy of an atmospheric GCM. J Clim 13:686–704. doi:10.1175/1520-0442(2000)013<0686:MTHSAT>2.0.CO;2

    Article  Google Scholar 

  • Cordisco E, Prigent C, Aires F (2006) Snow characterization at a global scale with passive microwave satellite observations. J Geophys Res 111:D19102. doi:10.1029/2005JD006773

  • Decharme B, Douville H, Prigent C, Papa F, Aires F (2008) A new river flooding scheme for global climate applications: off-line evaluation over South America. J Geophys Res 113:D11110. doi:10.1029/2007JD009376

    Article  Google Scholar 

  • Dickson B, Yashayaev I, Meincke J, Turrell B, Dye S, Holfort J (2001) Rapid freshening of the deep North Atlantic Ocean over the past four decades. Nature 416:832–837. doi:10.1038/416832a

    Article  Google Scholar 

  • Frappart F, Ramillien G, Biancamaria S, Mognard NM, Cazenave A (2006) Evolution of high-latitude snow mass derived from the GRACE gravimetry mission (2002–2004). Geophys Res Lett 33:L02501. doi:10.1029/2005GL024778

  • Frappart F, Papa F, Famiglietti JS, Prigent C, Rossow WB, Seyler F (2008) Interannual variations of river water storage from a multiple satellite approach: a case study for the Rio Negro River basin. J Geophys Res. doi:10.1029/2007JD009438

    Google Scholar 

  • Frazier P, Page K, Louis J, Briggs S, Robertson AI (2003) Relating wetland inundation to river flow using Landsat TM data. Int J Remote Sens 24(19):3755–3770. doi:10.1080/0143116021000023916

    Article  Google Scholar 

  • Frei A, Robinson DA (1999) Northern Hemisphere snow extent: regional variability 1972–1994. Int J Climatol 19(14):1535–1560. doi:10.1002/(SICI)1097-0088(19991130)19:14<1535::AID-JOC438>3.0.CO;2-J

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–470. doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2

    Article  Google Scholar 

  • Kane DL (1997) The impact of Arctic hydrologic perturbations on Arctic ecosystems induced by climate change. In: Oechel WC (ed) Global change and Arctic terrestrial ecosystems. Ecol Stud 124:63–81. Springer-Verlag, New York

  • Kouraev AV, Zakharova EA, Samain O, Mognard NM, Cazennave A (2005) Ob’ River discharge from Topex-Poseidon satellite altimetry (1992–2002). Remote Sens Environ 93:238–245. doi:10.1016/j.rse.2004.07.007

    Article  Google Scholar 

  • Krenke A (2004) Former Soviet Union hydrological snow surveys, 1966–1996. National Snow and Ice Data Center/World Data Center for Glaciology, Boulder

    Google Scholar 

  • Lammers R, Shiklomanov A, Vorosmarty C, Fekete B, Peterson B (2001) Assessment of contemporary Arctic river runoff based on observational discharge records. J Geophys Res 106(D4):3321–3334. doi:10.1029/2000JD900444

    Article  Google Scholar 

  • Massom R (1995) Satellite remote sensing of polar snow and ice: present status and future directions. Polar Res 31(177):99–114

    Article  Google Scholar 

  • Matthews E (2000) Wetlands. In: Khalil MAK (ed) Atmospheric methane: its role in the global environment. Springer-Verlag, New York, pp 202–233

    Google Scholar 

  • Mialon A, Royer A, Fily M (2005) Wetland seasonal dynamics and interannual variability over northern high latitudes derived from microwave satellite data. J Geophys Res 110:D17102. doi:10.1029/2004JD005697

  • Papa F, Legresy B, Mognard NM, Josberger EG, Remy F (2002) Estimating terrestrial snow depth with the Topex-Poseidon altimeter and radiometer. IEEE Trans Geosci Remote Sens 40:2162–2169. doi:10.1109/TGRS.2002.802463

    Google Scholar 

  • Papa F, Prigent C, Rossow WB, Legresy B, Remy F (2006a) Inundated wetland dynamics over boreal regions from remote sensing: the use of Topex-Poseidon dual-frequency radar altimeter observations. Int J Remote Sens 27:4847–4866. doi:10.1080/01431160600675887

    Google Scholar 

  • Papa F, Prigent C, Durand F, Rossow WB (2006b) Wetland dynamics using a suite of satellite observations: a case study of application and evaluation for the Indian Subcontinent. Geophys Res Lett 33:L08401. doi:10.1029/2006GL025767

  • Papa F, Prigent C, Rossow WB (2007) Ob’ River flood inundations from satellite observations: a relationship with winter snow parameters and river runoff. J Geophys Res 2007JD008451, doi:10.1029/2007JD008451

  • Papa F, Güntner A, Frappart F, Prigent C, Rossow WB (2008) Variations of surface water extent and water storage in large river basins: a comparison of different global data sources. Geophys Res Lett 35:L11401. doi:10.1029/2008GL033857

    Article  Google Scholar 

  • Peterson BJ, Holmes RM, McClelland JW, Vorosmarty CJ, Lammers RB, Shiklomanov AI (2002) Increasing river discharge to the Artic Ocean. Science 298:2171–2173. doi:10.1126/science.1077445

    Article  Google Scholar 

  • Prigent C, Matthews E, Aires F, Rossow WB (2001a) Remote sensing of global wetland dynamics with multiple satellite data sets. Geophys Res Lett 28:4631–4634. doi:10.1029/2001GL013263

    Article  Google Scholar 

  • Prigent C, Aires F, Rossow WB, Matthews E (2001b) Joint characterization of vegetation by satellite observations from visible to microwave wavelength: a sensitivity analysis. J Geophys Res 106:20665–20685. doi:10.1029/2000JD900801

    Article  Google Scholar 

  • Prigent C, Papa F, Aires F, Rossow WB, Matthews E (2007) Global inundation dynamics inferred from multiple satellite observations, 1993–2000. J Geophys Res 112:D12107. doi:10.1029/2006JD007847

  • Proshutinksy A, Polyakov I, Johnson M (1999) Climate states and variability of Arctic ice and water dynamics during 1946–1997. Polar Res 18(2):135–142. doi:10.1111/j.1751-8369.1999.tb00285.x

    Article  Google Scholar 

  • Ramillien G, Frappart F, Cazenave A, Güntner A (2005) Time variations of the land water storage from an inversion of 2 years of GRACE geoids. Earth Planet Sci Lett 235:283–301. doi:10.1016/j.epsl.2005.04.005

    Article  Google Scholar 

  • Rango A (1996) Spaceborne remote sensing for snow hydrology applications. Hydrol Sci J 41(4):477–494

    Article  Google Scholar 

  • Rango A (1997) Response of areal snow cover to climate change in a snowmelt-runoff model. Ann Glaciol 25:232–236

    Google Scholar 

  • R-ArcticNet v 3.0 (2003) A regional, electronic, hydrographic data network for the Arctic region. http://www.r-arcticnet.sr.unh.edu/

  • Rigor IG, Colony RL, Martin S (2000) Variations in surface air temperature observations in the Arctic, 1979–97. J Clim 13:896–914. doi:10.1175/1520-0442(2000)013<0896:VISATO>2.0.CO;2

    Article  Google Scholar 

  • Rodell M, Chen J, Kato H, Famiglietti J, Nigro J, Wilson C (2006) Estimating ground water storage changes in the Mississippi river basin using GRACE. Hydrogeol J doi:10.1007/s10040-006-0103-7

  • Rossow WB, Schiffer RA (1999) Advances in understanding clouds from ISCCP. Bull Am Meteorol Soc 80:2261–2287. doi:10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2

    Article  Google Scholar 

  • Serreze MC, Bromwich DH, Clark MP, Ertringer AJ, Zhang T, Lammers R (2003) Large-scale hydro-climatology of the terrestrial Arctic drainage system. J Geophys Res 107:8160. doi:10.1029/2001JD000919

    Google Scholar 

  • Serreze MC, Barrett AP, Lo F (2005) Northern high latitude precipitation as depicted by atmospheric reanalysis and satellite retrievals. Mon Wea Rev 133(12):3407–3430. doi:10.1175/MWR3047.1

    Article  Google Scholar 

  • Shiklomanov IA, Lammers RB, Peterson BJ, Vorosmarty CJ (2000) The dynamics of river water inflow to the Arctic Ocean, in the freshwater budget of the Arctic Ocean. Proceedings of the NATO advanced research workshop, Tallin, Estonia, 27 April–1 May 1998, pp 281–296, Kluwer Academic Publishers, Norwell

  • Smith LC (1997) Satellite remote sensing of river inundation area, stage and processes: a review. Hydrol Process 11:1427–1439. doi:10.1002/(SICI)1099-1085(199708)11:10<1427::AID-HYP473>3.0.CO;2-S

    Article  Google Scholar 

  • Smith LC, Isacks BL, Forster RR, Bloom AL, Preuss I (1995) Estimation of discharge from braided glacial rivers using ERS 1 synthetic aperture radar: first results. Water Resour Res 31(5):1325–1329. doi:10.1029/95WR00145

    Article  Google Scholar 

  • Smith LC, Isacks BL, Bloom AL (1996) Estimation of discharge from three braided rivers using synthetic aperture radar satellite imagery: potential application to ungaged basins. Water Resour Res 32(7):2021–2034. doi:10.1029/96WR00752

    Article  Google Scholar 

  • Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins M (2004) GRACE measurements of mass variability in the Earth system. Science 305:503–505. doi:10.1126/science.1099192

    Article  Google Scholar 

  • Vorosmarty CJ, Willmott CJ, Choudhury BJ, Schloss AL, Steams TK, Robeson SM et al (1996) Analyzing the discharge regime of a large tropical river through remote sensing, ground-based climatic data, and modeling. Water Resour Res 32(10):3137–3150. doi:10.1029/96WR01333

    Google Scholar 

  • Vorosmarty CJ, Hinzman LD, Peterson BJ, Bromwich DH, Hamilton LC, Morison J et al (2001) The hydrologic cycle and its role in arctic and global environmental change: a rationale and strategy for synthesis study. Arct Res Consortium of the United States, Fairbanks, Alaska, 84 pp

  • Wang XL, Cho H-R (1997) Spatial-temporal structures of trend and oscillatory variabilities of precipitation over northern Eurasia. J Clim 10:2285–2298. doi:10.1175/1520-0442(1997)010<2285:STSOTA>2.0.CO;2

    Article  Google Scholar 

  • Yang D, Kane DL, Hinzman LD, Zhang X, Zhang T, Ye H (2002) Siberian Lena river hydrologic regime and recent change. J Geophys Res 107(D23):4694. doi:10.1029/2002JD003149

    Google Scholar 

  • Yang D, Robinson D, Zhao Y, Estilow T, Ye B (2003) Stream flow response to seasonal snow cover extent changes in large Siberian watersheds. J Geophys Res 108(D18):4578. doi:10.1029/2002JD003149

    Google Scholar 

  • Yang D, Zhao Y, Armstrong R, Robinson D, Brodzik M-J (2007) Streamflow response to seasonal snow cover mass changes over large Siberian watersheds. J Geophys Res 112:F02S22. doi:10.1029/2006JF000518

  • Ye H, Cho H, Gustafson PE (1998) The changes in Russian winter snow accumulation during 1936–83 and its spatial patterns. J Clim 11:856–863. doi:10.1175/1520-0442(1998)011<0856:TCIRWS>2.0.CO;2

    Article  Google Scholar 

  • Zhang T, Barry RG, Knowles K, Heginbottom JA, Brown J (1999) Statistics and characteristics of permafrost and ground-ice distribution in the Northern Hemisphere. Polar Geogr 23(2):132–154

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the Arctic-RIMS team and people from the University of New Hampshire who are kindly providing data sets (river discharge, air temperature, precipitation, SSM/I-derived snow water equivalent) over the Arctic regions. We also thank the NSIDC for providing in situ snow water equivalent from the Former Soviet Union hydrological snow surveys. This research is supported by a NASA’s NEWS Grant NNDX7AO90E managed by Dr. Jared K. Entin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Papa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papa, F., Prigent, C. & Rossow, W.B. Monitoring Flood and Discharge Variations in the Large Siberian Rivers From a Multi-Satellite Technique. Surv Geophys 29, 297–317 (2008). https://doi.org/10.1007/s10712-008-9036-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-008-9036-0

Keywords

Navigation