Skip to main content

Advertisement

Log in

Microbial nitrogen dynamics in south central Chilean agricultural and forest ecosystems located on an Andisol

  • Original Article
  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

The natural soil N supply in volcanic soils (Andisols) can be a significant source of plant-available N for agro-ecosystems. Nevertheless, intensive farming systems in south Chile apply high fertilization rates, which lead to high production costs and involve a risk for adverse ecosystem effects. In order to achieve sustainable land management, a better understanding of the processes that govern soil N availability and loss, and their external drivers, is required. In this study, we selected a winter-cropland, a summer crop-winter fallow rotation, and a forest, used as a reference ecosystem. Gross N transformations (15N isotope dilution) and microbial community structure (phospho-lipid fatty acid analysis) in the topsoil were determined. Gross N mineralization was about ten times lower in the agro-ecosystems than in the forest, while gross nitrification was low in all sites. Gross N immobilization equalized or exceeded the gross inorganic N production in all sites. Microbial biomass was 3–5 times more abundant in the forest than in the agro-ecosystems. A positive relationship between the ratio fungi/bacteria and total microbial biomass was observed in these Andisols. We suggest that the reduction in fungal biomass induced a lower extracellular enzyme production and limited soil organic matter depolymerisation in the agro-ecosystems. We conclude that soil N cycling was unable to provide a significant N input for the croplands, but also the risk for ecosystem N losses was low, even under fallow soil conditions. Current fertilization practices appropriately anticipated the soil N cycling processes, but further research should indicate the potential of alternative land management to reduce fertilizer cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alfaro MV, Salazar F, Endress DB, Dumont JCL, Valdebenito AB (2006) Nitrogen leaching losses on volcanic ash soil as affected by the source of fertilizer. J Soil Sci Plant Nutr 6:54–63

    Google Scholar 

  • Allison SD, Vitousek PM (2005) Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biol Biochem 37:937–944

    Article  CAS  Google Scholar 

  • Allison SD, Czimczik CI, Treseder KK (2008) Microbial activity and soil respiration under nitrogen addition in Alaskan boreal forest. Glob Change Biol 14:1156–1168

    Article  Google Scholar 

  • Bååth E, Frostegård Å, Fritze H (1992) Soil bacterial biomass, activity, phospholipid fatty acid pattern, and pH tolerance in an area polluted with alkaline dust deposition. Appl Environ Microbiol 58:4026–4031

    PubMed  Google Scholar 

  • Bardgett RD, Shine A (1999) Linkages between plant litter diversity, soil microbial biomass and ecosystem function in temperate grasslands. Soil Biol Biochem 31:317–321

    Article  CAS  Google Scholar 

  • Beare MH, Hu S, Coleman DC, Hendrix PF (1997) Influences of mycelial fungi on soil aggregation and organic matter storage in conventional and no-tillage soils. Appl Soil Ecol 5:211–219

    Article  Google Scholar 

  • Bernier R, Undurraga P (2009) Fertilización de praderas permanentes para la producción de leche. In: Navarro H, Siebald E, Celis SR (eds) Manual de producción de leche para pequeños y medianos productores, Boletín Inia No 148. Instituto de Investigaciones Agropecuarias, Centro Regional de Investigación Remehue, Osorno, pp 12–18

    Google Scholar 

  • Billings SA, Gaydess EA (2008) Soil nitrogen and carbon dynamics in a fragmented landscape experiencing forest succession. Landscape Ecol 23:581–593

    Article  Google Scholar 

  • Booth M, Stark JM, Rastetter E (2005) Controls on nitrogen cycling in terrestrial ecosystems: a synthetic analysis of literature data. Ecology 75:139–157

    Google Scholar 

  • Borie F, Zunino H (1983) Organic matter P associations as a sink in P-fixation processes in allophanic soils of Chile. Soil Biol Biochem 15:599–603

    Article  CAS  Google Scholar 

  • Borie G, Peirano P, Zunino H, Aguilera SM (2002) N-pool in volcanic ash-derived soils in Chile and its changes in deforested sites. Soil Biol Biochem 34:1201–1206

    Article  CAS  Google Scholar 

  • Bossio DA, Scow KM, Gunapala N, Graham KJ (1998) Determinants of soil microbial communities: effects of agricultural management, season, and soil type on phospholipid fatty acid profiles. Microb Ecol 36:1–12

    Article  CAS  Google Scholar 

  • Brant JB, Myrold DD, Sulzman EW (2006) Root controls on microbial community structure in forest soils. Oecologia 148:650–659

    Article  PubMed  Google Scholar 

  • Burger M, Jackson LE (2003) Microbial immobilization of ammonium and nitrate in relation to ammonification and nitrification rates in organic and conventional cropping systems. Soil Biol Biochem 35:29–36

    Article  CAS  Google Scholar 

  • Campillo RR, Jobet CF, Undurraga PD (2007) Optimization of nitrogen fertilization for high-yielding potential wheat on Andisols at the Araucanía Region, Chile. Agric Técn 67:281–291

    Google Scholar 

  • Cartes P, Jara AA, Demanet R, Mora ML (2009) Urease activity and nitrogen mineralization kinetics as affected by temperature and urea input in southern Chilean Andisols. J Soil Sci Plant Nutr 9:69–82

    Google Scholar 

  • Chu H et al (2007) Soil microbial biomass, dehydrogenase activity, bacterial community structure in response to long-term fertilizer management. Soil Biol Biochem 39:2971–2976

    Article  CAS  Google Scholar 

  • Chung HG, Zak DR, Reich PB, Ellsworth DS (2007) Plant species richness, elevated CO2, and atmospheric nitrogen deposition alter soil microbial community composition and function. Glob Change Biol 13:980–989

    Article  Google Scholar 

  • Davidson EA, Hart SC, Shanks CA, Firestone MK (1991) Measuring gross nitrogen mineralization, immobilization, and nitrification by 15N isotopic pool dilution in intact soil cores. J Soil Sci 42:335–349

    Article  CAS  Google Scholar 

  • Day PR (1965) Particle fractionation and particle size analysis. In: Black CA (ed) Methods of soil analysis, 2nd edn. American Society of Agronomy, Madison, pp 562–566

    Google Scholar 

  • Denef K et al (2007) Community shifts and carbon translocation within metabolically-active rhizosphere microorganisms in grasslands under elevated CO2. Biogeosciences 4:769–779

    Article  CAS  Google Scholar 

  • Diaz C, Bravo A, Aranda G (1960) Reconocimiento de suelos de las provincias de Osorno y Llanquihue. Agric Técn 19–20:125–226

    Google Scholar 

  • Dighton J (2003) Fungi in ecosystem processes. Marcel Dekker, New York

    Book  Google Scholar 

  • Doran JW (1980) Soil microbial and biochemical changes associated with reduced tillage. Soil Sci Soc Am J 44:765–771

    Article  CAS  Google Scholar 

  • Drijber RA, Doran JW, Parkhurst AM, Lyon DJ (2000) Changes in soil microbial community structure with tillage under long-term wheat-fallow management. Soil Biol Biochem 32:1419–1430

    Article  CAS  Google Scholar 

  • Drury CF, Beauchamp EG (1991) Ammonium fixation, release, nitrification and immobilization in high- and low-fiwing soils. Soil Sci Soc Am J 55:125–129

    Article  CAS  Google Scholar 

  • Drury CF, Voroney RP, Beachamp EG (1991) Availability of NH4 +-N to microorganisms in soils with varying NH4 + fixation capacities. Soil Biol Biochem 23:165–169

    Article  CAS  Google Scholar 

  • FAO (2009) Fertilizers. http://faostat.fao.org/. Retrieved on November 11, 2009

  • Fierer N, Schimel JP, Holden PA (2003) Variations in microbial community composition through two soil depth profiles. Soil Biol Biochem 35:167–176

    Article  CAS  Google Scholar 

  • Franzluebbers AJ, Haney RL, Hons FM, Zuberer DA (1996) Active fractions of organic matter in soils with different texture. Soil Biol Biochem 28:1367–1372

    Article  CAS  Google Scholar 

  • Frostegård A, Bååth E (1996) The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fert Soils 22:59–65

    Article  Google Scholar 

  • Galloway JN et al (2003) The nitrogen cascade. Bioscience 53:341–356

    Article  Google Scholar 

  • Giardina CP, Ryan MG, Hubbard RM, Binkley D (2001) Tree species and soil textural controls on carbon and nitrogen mineralization rates. Soil Sci Soc Am J 65:1272–1279

    Article  CAS  Google Scholar 

  • Guo LB, Gifford RM (2002) Soil carbon stocks and land use change: a meta analysis. Glob Change Biol 8:345–360

    Article  Google Scholar 

  • Hassink J, Bouwman LA, Zwart KB, Bloem J, Brussaard L (1993) Relationships between soil texture, physical protection of organic matter, soil biota, and C and N mineralization in grassland soils. Geoderma 57:105–128

    Article  CAS  Google Scholar 

  • Hauck RD (1982) Nitrogen isotope ratio analysis. In: Page AL, Miller RA, Keeney DR (eds) Methods of soil analysis. ASA and SSSA, Madison, pp 735–779

    Google Scholar 

  • Heredia W, Peirano P, Borie G, Zunino H, Aguilera M (2007) Organic carbon balance in Chilean volcanic soils after human intrusion and under different management practices. Acta Agric Scand Sect B-Soil Plant Sci 57:329–334

    CAS  Google Scholar 

  • Huygens D, Rütting T, Boeckx P, Van Cleemput O, Godoy R, Müller C (2007) Soil nitrogen conservation mechanisms in a pristine south Chilean Nothofagus forest ecosystem. Soil Biol Biochem 39:2448–2458

    Article  CAS  Google Scholar 

  • Huygens D et al (2008) Mechanisms for retention of bioavailable nitrogen in volcanic rainforest soils. Nature Geosci 1:543–548

    Article  CAS  Google Scholar 

  • IUSS-Working-Group-WRB (2006) World reference base for soil resources. IUSS Working Group WRB. FAO, Rome

    Google Scholar 

  • Kirk KT, Farrell RL (1987) Enzymatic ‘combustion’: the microbial degradation of lignin. Ann Rev Microbiol 41:465–505

    Article  CAS  Google Scholar 

  • Kirkham D, Bartholomew WV (1954) Equations for following nutrient transformations in soil, utilizing tracer data. Soil Sci Soc Am Proc 18:33–34

    Article  CAS  Google Scholar 

  • Klute A (1986) Methods of soil analysis, part 1. Physical and mineralogical methods, 2nd edn. American Society of Agronomy, Soil Science Society of America, Madison

    Google Scholar 

  • Kroppenstedt R (1985) Fatty acid and menaquinone analysis of actinomycetes and related organisms. In: Goodfellow M, Minnikin D (eds) Chemical methods in bacterial systematics. Academic Press, London, pp 173–199

    Google Scholar 

  • Kroppenstedt R (1992) The genus Nocardiopsis. In: Balows A (ed) The prokaryotes: a handbook on the biology of bacteria ecophysiology, isolation, identification, applications. Springer, New York, pp 1139–1156

    Google Scholar 

  • Kurakov AV, Evdokimov IV, Popov AI (2001) Heterotrophic nitrification in soils. Eurasian Soil Sci 34:1116–1124

    Google Scholar 

  • Liang BC, Mackenzie AF, Gregorich EG (1999) Measurement of fixed ammonium and nitrogen isotope ratios using dry combustion. Soil Sci Soc Am J 63:1667–1669

    Article  CAS  Google Scholar 

  • Lin S, Dittert K, Wu WL, Sattelmacher B (2004) Added nitrogen interaction as affected by soil nitrogen pool size and fertilization-significance of displacement of fixed ammonium. J Plant Nutr Soil Sci 167:138–146

    Article  CAS  Google Scholar 

  • Matson PA, Parton WJ, Power AG, Swift MJ (1997) Agricultural intensification and ecosystem properties. Science 277:504–509

    Article  CAS  PubMed  Google Scholar 

  • McKinley DC, Rice CW, Blair JM (2008) Conversion of grassland to coniferous woodland has limited effects on soil nitrogen cycle processes. Soil Biol Biochem 40:2627–2633

    Article  CAS  Google Scholar 

  • Mora ML, Cartes P, Nuñez P, Salazar M, Demanet R (2007) Movement of NO3 –N and NH4 +–N in an Andisol and its influence on ryegrass production in a short term study. J Soil Sci Plant Nutr 7:46–64

    Google Scholar 

  • Motavalli PP, Palm CA, Elliot ET, Frey SD, Smithson PC (1995) Nitrogen mineralization in humid tropical forest soils: mineralogy, texture, and measured nitrogen fractions. Soil Sci Soc Am J 59:1168–1175

    Article  CAS  Google Scholar 

  • Mulvaney RL (1996) Nitrogen-inorganic forms. In: Sparks DL (ed) Methods of soil analysis. ASA and SSSA, Madison, pp 1123–1184

    Google Scholar 

  • Muruganandam S, Israel DW, Robarge WP (2009) Activities of nitrogen-mineralization enzymes associated with soil aggregate size fractions of three tillage systems. Soil Sci Soc Am J 73:751–759

    Article  CAS  Google Scholar 

  • Nanzyo M, Dahlgren RA, Shoji S (1993) Chemical characteristics of volcanic ash soils. In: Shoji S, Nanzyo M, Dahlgren RA (eds) Volcanic ash soils: genesis, properties and utilization. Elsevier, Amsterdam

    Google Scholar 

  • Nierop KGJ, van Bergen PF, Buurman P, van Lagen B (2005) NaOH and Na4P2O7 extractable organic matter in two allophanic volcanic ash soils of the Azores Islands—a pyrolysis GC/MS study. Geoderma 127:36–51

    Article  CAS  Google Scholar 

  • Nierop KGJ, Tonneijck FH, Jansen B, Verstraten JM (2007) Organic matter in volcanic ash soils under forest and Páramo along an Ecuadorian altitudinal transect. Soil Sci Soc Am J 71:1119–1127

    Article  CAS  Google Scholar 

  • Nodar R, Acea MJ, Carballas T (1992) Microbiological response to Ca(OH)2 treatments in a forest soil. FEMS Microb Lett 86:213–219

    Article  CAS  Google Scholar 

  • Nömmik H, Vahtras K (1982) Retention and fixation of ammonium and ammonia in soils. In: Stevenson SJ (ed) Nitrogen in agricultural soils. ASA-CSSA-SSSA, Madison, pp 123–172

    Google Scholar 

  • Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate, USDA Circular 939. United States Department of Agriculture, Washington DC

    Google Scholar 

  • Oyarzún CE, Huber A (2003) Nitrogen export from forested and agricultural watersheds of southern Chile. Gayana Bot 60:63–68

    Google Scholar 

  • Pennanen T, Frostegard A, Fritze H, Baath E (1996) Phospholipid fatty acid composition and heavy metal tolerance of soil microbial communities along two heavy metal-polluted gradients in coniferous forests. Appl Environ Microbiol 62:420–428

    CAS  PubMed  Google Scholar 

  • Perakis SS, Hedin LO (2001) Fluxes and fates of nitrogen in soil of an unpolluted old-growth temperate forest, southern Chile. Ecology 82:2245–2260

    Article  Google Scholar 

  • Perakis SS, Compton JE, Hedin LO (2005) Nitrogen retention across a gradient of 15N additions to an unpolluted temperate forest soil in Chile. Ecology 86:95–105

    Article  Google Scholar 

  • R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rhoades CC, Coleman DC (1999) Nitrogen mineralization and nitrification following land conversion in montane Ecuador. Soil Biol Biochem 31:1347–1354

    Article  CAS  Google Scholar 

  • Roing K, Andren O, Mattsson L (2006) ‘Non-exchangeable’ ammonium in soils from Swedish long-term agricultural experiments: mobilization and effects of fertilizer application. Acta Agric Scand Sect B-Soil Plant Sci 56:197–205

    Google Scholar 

  • Roldán A, Salinas-Garcia JR, Alguacil MM, Diaz E, Caravaca F (2005) Soil enzyme activities suggest advantages of conservation tillage practices in sorghum cultivation under subtropical conditions. Geoderma 129:178–185

    Article  Google Scholar 

  • Russow R, Spott O, Stange CF (2008) Evaluation of nitrate and ammonium as sources of NO and N2O emissions from black earth soils (Haplic Chernozem) based on 15N field experiments. Soil Biol Biochem 40:380–391

    Article  CAS  Google Scholar 

  • Rutherford PM, Juma NG (1992) Influence of soil texture on protozoa-induced mineralization of bacterial carbon and nitrogen. Can J Soil Sci 72:183–200

    CAS  Google Scholar 

  • Salazar F, Alfaro M, Ramírez L, Pinochet D, Ibarra C (2008) Lixiviación de nitrógeno en una pradera permanente fertilizada en otoño. In: Gallo C (ed) XXXIII reunión anual de la sociedad Chilena de producción animal. Facultad de Ciencias Veterinarias y Ciencias Agrarias, Universidad Austral de Chile, Valdivia, pp 71–72

    Google Scholar 

  • Schimel JP, Bennett J (2004) Nitrogen mineralization: challenges of a changing paradigm. Ecology 85:591–602

    Article  Google Scholar 

  • Shoji S, Nanzyo M, Dahlgren R (1993) Productivity and utilization of volcanic ash soils. In: Shoji S, Nanzyo M, Dahlgren R (eds) Volcanic ash soils—genesis, properties and utilization. Elsevier, Amsterdam, pp 209–244

    Chapter  Google Scholar 

  • Singh S, Singh JS (1995) Microbial biomass associated with water-stable aggregates in forest, savanna and cropland soils of a seasonally dry tropical region, India. Soil Biol Biochem 27:1027–1033

    Article  CAS  Google Scholar 

  • Sinsabaugh RL (1994) Enzymic analysis of microbial pattern and process. Biol Fert Soils 17:69–74

    Article  CAS  Google Scholar 

  • Sinsabaugh RL, Moorhead DL (1994) Resource allocation to extracellular enzyme production: a model for nitrogen and phosphorus control on litter decomposition. Soil Biol Biochem 26:1305–1311

    Article  Google Scholar 

  • Soil-Survey-Staff (2006) Keys to soil taxonomy, 10th edn. United States Department of Agriculture & Natural Resources Conservation Service, Washington, DC

    Google Scholar 

  • Stark C, Condron LM, Stewart A, Di HJ, O’Callaghan M (2007) Influence of organic and mineral amendments on microbial soil properties and processes. Appl Soil Ecol 35:79–93

    Article  Google Scholar 

  • Stevens RJ, Laughlin RJ (1994) Determining 15N in nitrite or nitrate by producing nitrous oxide. Soil Sci Soc Am J 58:1108–1116

    Article  CAS  Google Scholar 

  • Tippkötter R, Eickhorst T, Taubner H, Gredner B, Rademaker G (2009) Detection of soil water in macropores of undisturbed soil using microfocus X-ray tube computerized tomography (mu CT). Soil Till Res 105:12–20

    Article  Google Scholar 

  • Torn MS, Trumbore SE, Chadwick OA, Vitousek PM, Hendricks DM (1997) Mineral control of soil organic matter carbon storage and turnover. Nature 389:170–173

    Article  CAS  Google Scholar 

  • Tosso J (1985) Suelos volcánicos de Chile. Instituto de Investigaciones Agropecuarias, Santiago

    Google Scholar 

  • Trehan SP (1996) Immobilisation of 15NH4 + in three soils by chemical and biological processes. Soil Biol Biochem 28:1021–1027

    Article  CAS  Google Scholar 

  • Verde JR, Buurman P, Martinez-Cortizas A, Macias F, Arbestain MC (2008) NaOH extractable organic matter of andic soils from Galicia (NW Spain) under different land use regimes: a pyrolysis GC/MS study. Eur J Soil Sci 59:1096–1110

    Article  CAS  Google Scholar 

  • Waldrop MP, Balser TC, Firestone MK (2000) Linking microbial community composition to function in a tropical soil. Soil Biol Biochem 32:1837–1846

    Article  CAS  Google Scholar 

  • Yang LL, Zhang FS, Mao RZ, Ju XT, Cai XB, Lu YH (2008) Conversion of natural ecosystems to cropland increases the soil net nitrogen mineralization and nitrification in Tibet. Pedosphere 18:699–706

    Article  CAS  Google Scholar 

  • Young JL, Aldag RW (1982) Inorganic forms of nitrogen in soil. In: Stevensson FJ (ed) Nitrogen in agricultural soils. American Society of Agronomy, Madison, pp 43–66

    Google Scholar 

  • Zak DR, Holmes WE, White DC, Peacock AD, Tilman D (2003) Plant diversity, soil microbial communities, and ecosystem function: are there any links? Ecology 84:2042–2050

    Article  Google Scholar 

  • Zelles L (1999) Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. Biol Fert Soils 29:111–129

    Article  CAS  Google Scholar 

  • Zelles L, Bai QY, Beck T, Beese F (1992) Signature fatty acids in phospholipids and lipopolysaccharides as indicators of microbial biomass and community structure in agricultural soils. Soil Biol Biochem 24:317–332

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Dries Huygens is a postdoctoral fellow of the Fund for Scientific Research (FWO, Flanders). This research was supported by the National Commission for Scientific and Technological Research—Chile (FONDECYT, N°1090455), and the Dirección de Investigación y Desarrollo—Universidad Austral de Chile (DID-UACh). Eric Gillis, Katja Van Nieuland, and Jan Vermeulen are acknowledged for PLFA and isotope analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dries Huygens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huygens, D., Roobroeck, D., Cosyn, L. et al. Microbial nitrogen dynamics in south central Chilean agricultural and forest ecosystems located on an Andisol. Nutr Cycl Agroecosyst 89, 175–187 (2011). https://doi.org/10.1007/s10705-010-9386-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-010-9386-0

Keywords

Navigation