Skip to main content
Log in

Inverting the null-hypothesis of speciation: a marine snail perspective

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Speciation is currently an intensely debated topic, much more so than 20–30 years ago when most biologists held the view that new species (at least of animals) were formed through the split of evolutionary lineages by the appearance of physical barriers to gene flow. Recent advances have, however, lent both theoretical and empirical support to speciation in the presence of gene flow. Nevertheless, the allopatric hypothesis of speciation is still the default model. The consequence of this is that to support sympatric and parapatric modes of speciation all allopatric alternatives must be rejected, while an allopatric explanation is usually accepted without rejecting possible non-allopatric alternatives. However, classical cases of allopatric speciation can be challenged by alternative non-allopatric explanations, and this begs for a more respectful view of how to deal with all models of speciation. An appealing approach is studying parallel evolution of reproductive barriers, which allows for comparative approaches to distinguish between allopatric and non-allopatric events, and explicit tests of a suitable null-hypothesis. Parallel evolution of reproductive isolation in a strongly polymorphic marine snail species serves as an illustrative example of such an approach. In conclusion, a more balanced debate on allopatric and non-allopatric speciation is needed and an urgent issue is to treat both allopatric and nonallopatric hypotheses critically, rather than using allopatry as the default model of speciation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andrade SCS, Solferini VN (2007) Fine-scale genetic structure overrides macro-scale structure in a marine snail: nonrandom recruitment, demographic events or selection? Biol J Linn Soc 91:23–36

    Article  Google Scholar 

  • Arnqvist G, Edvardsson M, Friberg U, Nilsson T (2000) Sexual conflict promotes speciation in insects. Proc Natl Acad Sci USA 97:10460–10464

    Article  PubMed  CAS  Google Scholar 

  • Avise JC (2000) Phylogeography. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Barluenga M, Stölting KN, Salzburger W, Muschick M, Meyer A (2006) Sympatric speciation in Nicaraguan crater lake cichlid fish. Nature 439:719–723

    Article  PubMed  CAS  Google Scholar 

  • Baums IB, Miller MW, Hellberg ME (2005) Regionally isolated populations of an imperiled Caribbean coral, Acropora palmata. Mol Ecol 14:1377–1390

    Article  PubMed  CAS  Google Scholar 

  • Bernatchez L, Wilson CC (1998) Comparative phylogeography of Neartic and Palearctic fishes. Mol Ecol 7:431–452

    Article  Google Scholar 

  • Boughmann JW, Rundle HD, Schluter D (2005) Parallel evolution of sexual isolation in sticklebacks. Evolution 59:361–373

    Google Scholar 

  • Bush GL (1994) Sympatric speciation in animals: new wine in old bottles. Trends Ecol Evol 9:285–288

    Article  Google Scholar 

  • Carson HL (1987) Tracing ancestry with chromosomal sequences. Trends Ecol Evol 2:203–207

    Article  Google Scholar 

  • Colosimo PF, Hosemann KE, Balabhadra S, Villareal Jr G, Dickson M, Grimwood J, Schmutz J, Myers RM, Schluter D, Kingsley DM (2005) Widespread parallel evolution in sticklebacks by repeated fixation of ectodysplasin alleles. Science 307:1928–1933

    Article  PubMed  CAS  Google Scholar 

  • Coyne JA (1994) Ernst Mayr and the origin of species. Evolution 48:19–30

    Article  Google Scholar 

  • Coyne JA, Orr HA (2004) Speciation. Sinauer Associates, Sunderland, Massachusetts

    Google Scholar 

  • Coyne JA, Price TD (2000) Little evidence for sympatric speciation in island birds. Evolution 54:2166–2171

    PubMed  CAS  Google Scholar 

  • Cruz R, Garcia C (2001) Disruptive selection on female reproductive characters in a hybrid zone of Littorina saxatilis. Evol Ecol 15:167–182

    Article  Google Scholar 

  • Derome N, Duchesne P, Bernatchez L (2006) Parallelism in gene transcription among sympatric liake whitefish (Coregonus clupeaformis, Mitchill) ecotypes. Mol Ecol 15:1239–1249

    Article  PubMed  CAS  Google Scholar 

  • Dieckmann U, Doebeli M (1999) On the origin of species by sympatric speciation. Nature 400:354–357

    Article  PubMed  CAS  Google Scholar 

  • Doebeli M, Dieckmann U (2003) Speciation along environmental gradients. Nature 400:354–357

    Google Scholar 

  • Emerson BC, Kolm N (2005a) Species diversity can drive speciation. Nature 434:1015–1017

    Article  PubMed  CAS  Google Scholar 

  • Emerson BC, Kolm N (2005b) Ecology: is speciation driven by species diversity? Reply. Nature 438:E2

    Article  CAS  Google Scholar 

  • Felsenstein J (1981) Skepticism towards Santa Rosalia, or why are there so few kinds of animals? Evolution 35:124–138

    Article  Google Scholar 

  • Foster SA, Baker JA (2004) Evolution in parallel: new insights from a classic system. Trends Ecol Evol 19:456–459

    Article  PubMed  Google Scholar 

  • Futuyma DJ (2005) Evolution. Sinauer Ass. Sunderland, Massachusetts

    Google Scholar 

  • Grahame JW, Wilding CS, Butlin RG (2006) Adaptation to a steep environmental gradient and an associated barrier to gene exchange in Littorina saxatilis. Evolution 60:268–278

    PubMed  CAS  Google Scholar 

  • Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc 58:247–276

    Google Scholar 

  • Hollander J, Collyer ML, Adams DC, Johannesson K (2006) Phenotypic plasticity in two marine snails: constraints superseding life-history. J Evol Biol 19:1861–1872

    Article  PubMed  CAS  Google Scholar 

  • Hollander J, Lindegarth M, Johannesson K (2005) Local adaptation but not geographic separation promotes assortative mating in a snail–support for ecological speciation. Anim Behav 70:1209–1219

    Article  Google Scholar 

  • Howard DJ, Marshall JL, Braswell WE (2001) Examining evidence of reproductive isolation in sockeye salmon. Science 291:1853

    Article  PubMed  CAS  Google Scholar 

  • Huber SK, De Leon LF, Hendry AP, Bermingham E, Podos J (2007) Reproductive isolation of sympatric morphs in a population of Darwin’s finches. Proc R Soc B 274:1709–1714

    Article  PubMed  Google Scholar 

  • Hull SL, Grahame J, Mill PJ (1996) Morphological divergence and evidence for reproductive isolation in Littorina saxatilis (Olivi) in northeast England. J Moll Stud 62:89–99

    Article  Google Scholar 

  • Janson K (1983) Selection and migration in two distinct phenotypes of Littorina saxatilis in Sweden. Oecologia 59:58–61

    Article  Google Scholar 

  • Jiggins CD (2006) Sympatric speciation: why the controversy? Curr Biol 16:R333–R334

    Article  PubMed  CAS  Google Scholar 

  • Johannesson B, Johannesson K (1996) Population differences in behaviour and morphology in Littorina saxatilis: phenotypic plasticity or genetic differentiation? J Zool 240:475–493

    Article  Google Scholar 

  • Johannesson K (2001) Parallel speciation: a key to sympatric divergence. Trends Ecol Evol 16:148–153

    Article  PubMed  Google Scholar 

  • Johannesson K, André C (2006) Life on the margin: genetic isolation and diversity loss in a peripheral marine ecosystem, the Baltic Sea. Mol Ecol 15:2013–2029

    Article  PubMed  CAS  Google Scholar 

  • Johannesson K, Johannesson B, Lundgren U (1995) Strong natural selection causes microscale allozyme variation in a marine snail. Proc Nat Acad Sci USA 92:2602–2606

    Article  PubMed  CAS  Google Scholar 

  • Johannesson K, Johannesson B, Rolán-Alvarez E (1993) Morphological differentiation and genetic cohesiveness over a microenvironmental gradient in the marine snail Littorina saxatilis. Evolution 47:1770–1787

    Article  Google Scholar 

  • Johannesson K, Larsson A, Cruz R, Garcia C, Rolán-Alvarez E (2000) Hybrid fitness seems not to be an explanation for the partial reproductive isolation between ecotypes of Galician Littorina saxatilis. J Moll Stud 66:149–156

    Article  Google Scholar 

  • Johannesson K, Tatarenkov A (1997) Allozyme variation in a snail (Littorina saxatilis)–deconfounding the effects of microhabitat and gene flow. Evolution 51:402–409

    Article  CAS  Google Scholar 

  • Jones GP, Milicich MJ, Emslie MJ, Lunow C (1999) Self-recruitement in a coral reef fish population. Nature 402:802–804

    Article  CAS  Google Scholar 

  • Karl SA, Avise JC (1992) Balancing selection at allozyme loci in oysters: implications from nuclear RFLPs. Science 256:100–102

    Article  PubMed  CAS  Google Scholar 

  • Kirkpatrick M, Barton N (2006) Chromosome inversions, local adaptation and speciation. Genetics 173:419–434

    Article  PubMed  CAS  Google Scholar 

  • Knowlton N, Weight LA, Solórzano LA, Mills DK, Bermingham E (1993) Divergence in proteins, mitochondrial DNA and reproductive compatibility across the Isthmus of Panama. Science 260:1629–1632

    Article  PubMed  CAS  Google Scholar 

  • Knowlton N, Weight LA (1998) New dates and new rates for divergence across the Isthmus of Panama. Proc R Soc B 265:2257–2263

    Article  Google Scholar 

  • Kondrashov AS, Kondrashov FA (1999) Interactions among quantitative traits in the course of sympatric speciation. Nature 400:351–354

    Article  PubMed  CAS  Google Scholar 

  • Landry C, Geyer LB, Arakaki Y, Uehara T, Palumbi SR (2003) Recent speciation in the Indo-West Pacific: rapid evolution of gamete recognition and sperm morphology in cryptic species of sea urchin. Proc Roy Soc Lond B 270:1839–1847

    Article  CAS  Google Scholar 

  • Lu G, Basley DJ, Bernatchez L (2001) Contrasting patterns of mitochondrial DNA and microsatellite introgressive hybridization between lineages of lake whitefish (Coregonus clupeaformis); relevance for speciation. Mol Ecol 10:965–985

    Article  PubMed  CAS  Google Scholar 

  • Mäkinen T, Panova M, Johannesson K, Tatarenkov A, Appelqvist C, André C (2007) Genetic differentiation on multiple spatial scales in an ecotype-forming marine snail with limited dispersal: Littorina saxatilis. Biol J Linn Soc (in press)

  • Mayhew PJ (2007) Why are there so many insect species? Perspectives from fossils and phylogenies. Biol Rev 82:425–454

    Article  PubMed  Google Scholar 

  • Maynard Smith J (1966) Sympatric speciation. Am Nat 100:637–650

    Article  Google Scholar 

  • Mayr E (1954) Geographic speciation in tropical echinoids. Evolution 8:1–18

    Article  Google Scholar 

  • Mayr E (1963) Animal species and evolution. Harvard University Press, Cambridge, Massachusetts

    Google Scholar 

  • McCartney MA, Keller G, Lessios HA (2000) Dispersal barriers in tropical oceans and speciation Atlantic and eastern Pacific sea urchins of the genus Echinometra. Mol Ecol 9:1391–1400

    Article  PubMed  CAS  Google Scholar 

  • McKinnon JS, Rundle HD (2002) Speciation in nature: the threespine stickleback model systems. Trends Ecol Evol 17:480–488

    Article  Google Scholar 

  • Munday PL, van Herwerden L, Dudgeon CL (2004) Evidence for sympatric speciation by host shisft in the sea. Curr Biol 14:1498–1504

    Article  PubMed  CAS  Google Scholar 

  • Nagel L, Schluter D (1998) Body size, natural selection, and speciation in sticklebacks. Evolution 52:209–218

    Article  Google Scholar 

  • Nosil P, Crespi BJ, Sandoval CP (2002) Host-plant adaptation drives the parallel evolution of reproductive isolation. Nature 417:440–443

    Article  PubMed  CAS  Google Scholar 

  • Novotny V, Basset Y, Miller SE, Weiblen GD, Bremer B, Cizek L, Drozd P (2002) Low host specificity of herbivorous insects in a tropical forest. Nature 416:841–844

    Article  PubMed  CAS  Google Scholar 

  • Østbye K, Amundsen PA, Bernatchez L, Klementsen A, Knudsen R, Kristoffersen R, Næsje TF, Hindar K (2006) Parallel evolution of ecomorphological traits in the European whitefish Coregonus lavaretus (L.) species complex during postglacial times. Mol Ecol 15:3983–4001

    Article  PubMed  CAS  Google Scholar 

  • Palumbi SR (1996) What can molecular genetics contribute to marine biogeography? An urchin’s tale. J Exp Mar Biol Ecol 203:75–92

    Article  CAS  Google Scholar 

  • Panova M, Hollander J, Johannesson K (2006) Site-specific genetic divergence in parallel hybrid zones suggests nonallopatric evolution of reproductive barriers. Mol Ecol 15:4021–4031

    Article  PubMed  CAS  Google Scholar 

  • Pickles A, Grahame J (1999) Mate choice in divergent morphs of Littorina saxatilis (Olivi): speciation in action? Anim Behav 58:181–184

    Article  PubMed  Google Scholar 

  • Quesada H, Posada D, Caballero A, Morán P, Rolán-Alvarez E (2007) Phylogenetic evidence for multiple sympatric ecological diversification in a marine snail. Evolution 61:1600–1612

    Article  PubMed  Google Scholar 

  • Raup DM (1979) Size of the Permo-Triassic bottleneck and its evolutionary implications. Science 206:217–218

    Article  PubMed  Google Scholar 

  • Reid DG (1996) Systematics and evolution of Littorina. The Ray Society, Dorchester, UK

    Google Scholar 

  • Remington CL (1968) Suture-zones of hybrid interaction between recently joined biotas. In: Dobzhansky T, Hecht MK, Steere WE (eds) Evolutionary biology. Plenum Press, New York, pp 321–428

  • Rice WR, Salt GW (1990) The evolution of reproductive isolation as a correlated character under sympatric conditions: experimental evidence. Evolution 44:1140–1152

    Article  Google Scholar 

  • Ricklefs RE, Bermingham E (2007) The causes of evolutionary radiations in archipelagoes: Passerine birds in the Lesser Antilles. Am Nat 169:285–297

    Article  Google Scholar 

  • Rieseberg LH (2001) Chromosomal rearrangements and speciation. Trends Ecol Evol 16:351–358

    Article  PubMed  Google Scholar 

  • Rieseberg LH, Willis JH (2007) Plant speciation. Science 317:910–914

    Article  PubMed  CAS  Google Scholar 

  • Rocha LA, Robertson DR, Roman J, Bowen BW (2005) Ecological speciation in tropical reef fishes. Proc R Soc B 272:573–579

    PubMed  Google Scholar 

  • Rogers SM, Bernatchez L (2005) Integrating QTL mapping and genome scans towards the characterization of candidate loci under parellel selection in the lake whitefish (Coregonus clupeaformis). Mol Ecol 14:351–361

    Article  PubMed  CAS  Google Scholar 

  • Rolán-Alvarez E, Carballo M, Galindo J, Moran P, Fernández B, Caballero A, Cruz R, Boulding EG, Johannesson K (2004) Nonallopatric and parallel origin of local reproductive barriers between two snail ecotypes. Mol Ecol 13:3415–3424

    Article  PubMed  CAS  Google Scholar 

  • Rolán-Alvarez E, Erlandsson J, Johannesson K, Cruz R (1999) Mechanisms of incomplete prezygotic reproductive isolation in an intertidal snail; testing behavioural models in wild populations. J Evol Biol 12:879–890

    Article  Google Scholar 

  • Rolán-Alvarez E, Johannesson K, Erlandsson J (1997) The maintenance of a cline in the marine snail Littorina saxatilis: the role of home site advantage and hybrid fitness. Evolution 51:1838–1847

    Article  Google Scholar 

  • Rundle HD, Nagel L, Boughman JW, Schluter D (2000) Natural selection and parallel speciation in sticklebacks. Science 287:306–308

    Article  PubMed  CAS  Google Scholar 

  • Savolainen V, Anstett M-C, Lexer C, Hutton I, Clarkson JJ, Norup MV, Powell MP, Springate D, Salamin N, Baker WJ (2006) Sympatric speciation in palms on an oceanic island. Nature 441:210–213

    Article  PubMed  CAS  Google Scholar 

  • Schliewen UK, Kocher TD, McKaye KR, Seehausen O, Tautz D (2006) Evidence for sympatric speciation? Nature 444:E12–E13

    Article  PubMed  CAS  Google Scholar 

  • Schliewen UK, Tautz D, Pääbo S (1994) Sympatric speciation suggested by monophyly of crater lake cichlids. Nature 368:629–632

    Article  PubMed  CAS  Google Scholar 

  • Schliewen UK, Rassman K, Markmann M, Markert J, Kocher T, Tautz D (2001) Genetic ecological divergence of a monophyletic cichlid species pair under fully sympatric conditions in Lake Ejakham, Cameroon. Mol Ecol 10:1471–1488

    Article  PubMed  CAS  Google Scholar 

  • Schluter D (1996) Ecological speciation in postglacial fishes. Phil Trans R Soc Lond B 351:807–814

    Article  Google Scholar 

  • Schluter D (2000) The ecology of adaptive radiation. Oxford University Press, Oxford

    Google Scholar 

  • Schluter D, Nagel L (1994) Parallel speciation by natural selection. Am Nat 146:292–301

    Article  Google Scholar 

  • Seehausen O (2006) African cichlid fish: a model system in adaptive radiation. Proc R Soc B 273:1987–1998

    Article  PubMed  Google Scholar 

  • Seehausen O, van Alphen JJM (1998) The effect of male coloration on female mate choice in closely related Lake Victoria cichlids (Haplochromis nyererei complex). Behav Ecol Sociobiol 42:1–8

    Article  Google Scholar 

  • Sepkoski JJ Jr (1984) A kinetic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic families and mass extinctions. Paleobiology 10:246–267

    Google Scholar 

  • Sepkoski JJ Jr (1998) Rates of speciation in the fossil record. Phil Trans R Soc Lond B. 353:315–326

    Article  Google Scholar 

  • Shaw KL (1996) Sequential radiations and patterns of speciation in the Hawaiian cricket genus Laupala inferred from DNA sequences. Evolution 50:237–255

    Article  CAS  Google Scholar 

  • Stuessy TF (2006) Sympatric plant speciation in islands? Nature 443:E12

    Article  PubMed  CAS  Google Scholar 

  • Su Z-H, Tominaga O, Ohama T, Kajiwara E, Ischikawa R, Okada TS, Nakamura K, Osawa S (1996) Parallel evolution in radiation of Ohomopterus ground beetles inferred from mitochondrial ND5 gene sequences. J Mol Evol 43:662–671

    Article  PubMed  CAS  Google Scholar 

  • Swearer SE, Caselle JE, Lea DW, Warner RR (1999) Larval retention and recruitment in an island population of a coral-reef fish. Nature 402:799–802

    Article  CAS  Google Scholar 

  • Swenson NG, Howard DJ (2004) Do suture zones exist? Evolution 58:2391–2397

    PubMed  Google Scholar 

  • Taylor MS, Hellberg ME (2003) Genetic evidence for local retention of pelagic larvae in a Caribbean reef fish. Science 299:107–109

    Article  PubMed  CAS  Google Scholar 

  • Ueshima R, Asami T (2003) Single-gene speciation by left-right reversal. Nature 425:679

    Article  PubMed  CAS  Google Scholar 

  • Väinölä R (2003) Repeated trans-Arctic invasions in littoral bivalves: molecular zoogeography of the Macoma balthica complex. Mar Biol 143:935–946

    Article  Google Scholar 

  • Via S (2001) Sympatric speciation in animals: the ugly duckling grows up. Trends Ecol Evol 16:381–390

    Article  PubMed  Google Scholar 

  • Wellenreuther M, Barrett PT, Clements KD (2007) Ecological diversification in habitat use by subtidal triplefin fishes (Tripterygiidae). Mar Ecol Ser Prog 330:235–246

    Article  Google Scholar 

  • White MJD (1978) Modes of speciation. W.H. Freeman, San Francisco, California

    Google Scholar 

  • Wilson EO (2000) A global biodiversity map. Science 289:2279–2279

    PubMed  CAS  Google Scholar 

  • Wood TE, Burke JM, Rieseberg LH (2005) Parallel genotypic adaptation: when evolution repeats itself. Genetica 123:157–170

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

I am most grateful to the organizers of the Lund symposium on speciation, and to the participants in the meeting who contributed with insightful discussions on the topic of parallel speciation, in particular Olof Leimar, who explicitly suggested me to write a paper on the “inverted null-hypothesis” problem. Moreover, two anonymous reviewers, and Erik Svensson gave excellent critics and made me tighten up loose parts of my argumentation. The Swedish Research Council funded this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerstin Johannesson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johannesson, K. Inverting the null-hypothesis of speciation: a marine snail perspective. Evol Ecol 23, 5–16 (2009). https://doi.org/10.1007/s10682-007-9225-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-007-9225-1

Keywords

Navigation