Skip to main content
Log in

Development of SNP assays associated with oleic acid QTLs in N00-3350 soybean

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Increasing the amount of oleic acid in soybean oil would reduce the need for hydrogenation, a process that creates unhealthy trans fatty acids. A previous study mapped six oleic acid quantitative trait loci (QTLs) from N00-3350 (~550 g kg−1 oleic acid) on soybean chromosomes (Gm) 5, 17, 18, and 19, which corresponds to linkage groups (LG) A1, D2, G, and L, respectively. The objectives of this study were to develop high throughput assays to detect single nucleotide polymorphism (SNP) markers associated with these oleic acid QTLs. Several candidate genes that are putatively responsible for the oleic acid phenotype in N00-3350 were identified by BLAST searches against the soybean genomic assembly using the sequences of fatty acid synthesis genes from soybean and Arabidopsis. Putative accC-2 and KAS I genes were located in the region of the cqOle-001 on Gm05 (LG-A1). A putative KAS I gene was located in the region of the cqOle-003 on Gm18 (LG-G) and a putative accB-1 gene was located in the region of the cqOle-004 on Gm18 (LG-G). These fatty acid candidate genes and sequence-tagged sites were used to identify SNPs between N00-3350 and ‘Boggs’. Based on these SNPs, seven SimpleProbe probes for melting curve analysis were developed to rapidly identify the alleles from the mid-oleic acid soybean line N00-3350 at the desired loci. These assays provide a high-throughput and rapid SNP genotyping method which can be used to accelerate the development of mid-oleic acid content soybean cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aghoram K, Wilson RF, Burton JW, Dewey RE (2006) A mutation in a 3-keto-acyl-ACP synthase II gene is associated with elevated palmitic acid levels in soybean seeds. Crop Sci 46:2453–2459

    Article  CAS  Google Scholar 

  • Arondel V, Lemieux B, Hwang I, Gibson S, Goodman HM, Somerville CR (1992) Map-based cloning of a gene controlling omega-3 fatty acid desaturation in Arabidopsis. Science 258:1353–1355

    Article  CAS  PubMed  Google Scholar 

  • Bachlava E, Dewey RE, Auclair J, Wang S, Burton JW, Cardinal AJ (2008) Mapping genes encoding microsomal ω-6 desaturase enzymes and their cosegregation with QTL affecting oleate content in soybean. Crop Sci 48:640–650

    Article  CAS  Google Scholar 

  • Bilyeu KD, Palavalli L, Sleper DA, Beuselinck PR (2003) Three microsomal omega-3 fatty-acid desaturase genes contribute to soybean linolenic acid levels. Crop Sci 43:1833–1838

    Article  CAS  Google Scholar 

  • Bilyeu K, Palavalli L, Sleper D, Beuselinck P (2005) Mutations in soybean microsomal omega-3 fatty acid desaturase genes reduce linolenic acid concentration in soybean seeds. Crop Sci 45:1830–1836

    Article  CAS  Google Scholar 

  • Boerma HR, Hussey RS, Phillips DV, Wood ED, Rowan GB, Finnerty SL (2000) Registration of `Boggs’ soybean. Crop Sci 40:294–295

    Google Scholar 

  • Burton JW, Wilson RF, Rebetzke GJ, Pantalone VR (2006) Registration of N98–4445A mid-oleic soybean germplasm line. Crop Sci 46:1010–1012

    Article  Google Scholar 

  • Byfield GE, Xue H, Upchurch RG (2006) Two genes from soybean encoding soluble Δ9 stearoyl-ACP desaturases. Crop Sci 46:840–846

    Article  CAS  Google Scholar 

  • Cahoon EB (2003) Genetic enhancement of soybean oil for industrial uses: prospects and challenges. AgBioForum 6:11–13

    Google Scholar 

  • Cardinal AJ, Burton JW, Camacho-Roger AM, Yang JH, Wilson RF, Dewey RE (2007) Molecular analysis of soybean lines with low palmitic acid content in the seed oil. Crop Sci 47:304–310

    Article  CAS  Google Scholar 

  • Cardinal AJ, Dewey RE, Burton JW (2008) Estimating the individual effects of the reduced palmitic acid fap nc and fap1 alleles on agronomic traits in two soybean populations. Crop Sci 48:633–639

    Article  CAS  Google Scholar 

  • Chappell AS, Bilyeu KD (2006) A GmFAD3A mutation in the low linolenic acid soybean mutant C1640. Plant Breeding 125:535–536

    Article  CAS  Google Scholar 

  • Chappell AS, Bilyeu KD (2007) The low linolenic acid soybean line PI 361088B contains a novel GmFAD3A mutation. Crop Sci 47:1705–1710

    Article  CAS  Google Scholar 

  • Choi I-Y, Hyten DL, Matukumalli LK, Song Q, Chaky JM, Quigley CV, Chase K, Lark KG, Reiter RS, Yoon M-S, Hwang E-Y, Yi S-I, Young ND, Shoemaker RC, van Tassell CP, Specht JE, Cregan PB (2007) A soybean transcript Map: gene distribution, haplotype and single-nucleotide polymorphism analysis. Genetics 176:685–696

    Article  CAS  PubMed  Google Scholar 

  • Dehesh K, Tai H, Edwards P, Byrne J, Jaworski JG (2001) Overexpression of 3-ketoacyl-acyl-carrier protein synthase IIIs in plants reduces the rate of lipid synthesis. Plant Physiol 125:1103–1114

    Article  CAS  PubMed  Google Scholar 

  • Faris JD, Li WL, Liu DJ, Chen PD, Gill BS (1999) Candidate gene analysis of quantitative disease resistance in wheat. Theor Appl Genet 98:219–225

    Article  CAS  Google Scholar 

  • Gilsinger JJ (2008) Reciprocal effects and selection for altered fatty acid composition of soybean oil. PhD Dissertation, NC State, North Carolina, Raleigh

  • Ha BK, Boerma HR (2008) High-throughput SNP genotyping by melting curve analysis for resistance to southern root-knot nematode and frogeye leaf spot in soybean. J Crop Sci Biotech 11:91–100

    Google Scholar 

  • Harwood JL (1988) Fatty acid metabolism. Annu Rev Plant Physiol Plant Mol Biol 39:101–138

    Article  CAS  Google Scholar 

  • Heppard EP, Kinney AJ, Stecca KL, Miao GH (1996) Developmental and growth temperature regulation of two different microsomal ω-6 desaturase genes in soybeans. Plant Physiol 110:311–319

    Article  CAS  PubMed  Google Scholar 

  • Iba K, Gibson S, Nishiuchi T, Fuse T, Nishimura M, Arondel V, Hugly S, Somerville C (1993) A gene encoding a chloroplast ω-3 fatty acid desaturase complements alterations in fatty acid desaturation and chloroplast copy number of the fad7 mutant of Arabidopsis thaliana. J Biol Chem 268:24099–24105

    CAS  PubMed  Google Scholar 

  • Ke J, Wen T-N, Nikolau BJ, Wurtele ES (2000) Coordinate regulation of the nuclear and plastidic genes coding for the subunits of the heteromeric acetyl-coenzyme A carboxylase. Plant Physiol 122:1057–1072

    Article  CAS  PubMed  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Lemieux B, Miquel M, Somerville C, Browse J (1990) Mutants of Arabidopsis with alterations in seed lipid fatty acid composition. Theor Appl Genet 80:234–240

    Article  CAS  Google Scholar 

  • Li Z, Wilson RF, Rayford WE, Boerma HR (2002) Molecular mapping genes conditioning reduced palmitic acid content in N87–2122-4 soybean. Crop Sci 42:373–378

    Article  CAS  Google Scholar 

  • Lichtenstein AH, Ausman LM, Jalbert SM, Schaefer EJ (1999) Effects of different forms of dietary hydrogenated fats on serum lipoprotein cholesterol levels. N Engl J Med 340:1933–1940

    Article  CAS  PubMed  Google Scholar 

  • Manly KF, Cudmore JRH, Meer JM (2001) Map manager QTX, cross-platform software for genetic mapping. Mammalian Genome 12:930–932

    Article  CAS  PubMed  Google Scholar 

  • Mercer LC, Wynne JC, Young CT (1990) Inheritance of fatty acid content in peanut oil. Peanut Sci 17:17–21

    Article  CAS  Google Scholar 

  • Monteros MJ, Burton JW, Boerma HR (2008) Molecular mapping and confirmation of QTLs associated with oleic acid content in N00–3350 soybean. Crop Sci 48:2223–2234

    Article  Google Scholar 

  • O’Hara P, Slabas AR, Fawcett T (2002) Fatty acid and lipid biosynthetic genes are expressed at constant molar ratios but different absolute levels during embryogenesis. Plant Physiol 129:310–320

    Article  PubMed  Google Scholar 

  • Sandhu D, Alt J, Scherder C, Fehr W, Bhattacharyya M (2007) Enhanced oleic acid content in the soybean mutant M23 is associated with the deletion in the Fad2–1a gene encoding a fatty acid desaturase. J Am Oil Chem Soc 84:229–235

    Article  CAS  Google Scholar 

  • SAS (2001) SAS/STAT user’s guide. Version 8. SAS Inst., Cary, NC

    Google Scholar 

  • Schlueter JA, Vasylenko-Sanders IF, Deshpande S, Yi J, Siegfried M, Roe BA, Schlueter SD, Scheffler BE, Shoemaker RC (2007) The FAD2 gene family of soybean: insights into the structural and functional divergence of a paleopolyploid genome. Crop Sci 47:S-14-26

    Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang X-C, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Article  CAS  PubMed  Google Scholar 

  • Shoemaker R, Keim P, Vodkin L, Retzel E, Clifton SW, Waterston R, Smoller D, Coryell V, Khanna A, Erpelding J, Gai X, Brendel V, Raph-Schmidt C, Shoop EG, Vielweber CJ, Schmatz M, Pape D, Bowers Y, Theising B, Martin J (2002) A compilation of soybean ESTs: generation and analysis. Genome 45:329–338

    Article  PubMed  Google Scholar 

  • Slabaugh MB, Huestis GM, Leonard J, Holloway JL, Rosato C, Hongtrakul V, Martini N, Toepfer R, Voetz M, Schell J, Knapp SJ (1997) Sequence-based genetic markers for genes and gene families: single-strand conformational polymorphisms for the fatty acid synthesis genes of Cuphea. Theor Appl Genet 94:400–408

    Article  CAS  Google Scholar 

  • Somerville C, Browse J, Jaworski JG, Ohlrogge JB (2000) Lipids. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, MD, pp 456–527

    Google Scholar 

  • Stuber CW, Polacco M, Senior ML (1999) Synergy of empirical breeding, marker-assisted selection, and genomics to increase crop yield potential. Crop Sci 39:1571–1583

    Article  Google Scholar 

  • Tang GQ, Novitzky WP, Griffin HC, Huber SC, Dewey RE (2005) Oleate desaturase enzymes of soybean: evidence of regulation through differential stability and phosphorylation. Plant J 44:433–446

    Article  CAS  PubMed  Google Scholar 

  • Thelen JJ, Ohlrogge JB (2002) Both antisense and sense expression of biotin carboxyl carrier protein isoform 2 inactivates the plastid acetyl-coenzyme A carboxylase in Arabidopsis thaliana. Plant J 32:419–431

    Article  CAS  PubMed  Google Scholar 

  • Topfer R, Martini N (1994) Molecular cloning of cDNAs or genes encoding proteins involved in de novo fatty acid biosynthesis in plants. J Plant Physiol 143:416–425

    Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genomics-assisted breeding for crop improvement. Trends Plant Sci 10:621–630

    Article  CAS  PubMed  Google Scholar 

  • Voorrips RE (2002) MapChart: Software for the Graphical Presentation of Linkage Maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Wilcox JR (2004) World distribution and trade of soybean. In: Boerma HR, Specht JE (eds) Soybeans: improvement, production, and uses, 3rd edn. ASA, CSSA, and SSSA, Madison, WI, pp 1–13

    Google Scholar 

  • Wilson RF (1987) Seed metabolism. In: Wilcox JR (ed) Soybeans: improvement, production and uses, 2nd edn. ASA, CSSA, and SSSA, Madison, WI, pp 643–686

    Google Scholar 

  • Wilson R, Marquardt T, Novitzky W, Burton J, Wilcox J, Kinney A, Dewey R (2001) Metabolic mechanisms associated with alleles governing the 16:0 concentration of soybean oil. J Am Oil Chem Soc 78:335–340

    Article  CAS  Google Scholar 

  • Zhang P, Burton JW, Upchurch RG, Whittle E, Shanklin J, Dewey RE (2008) Mutations in a Δ9-stearoyl-ACP-desaturase gene are associated with enhanced stearic acid levels in soybean seeds. Crop Sci 48:2305–2313

    Article  CAS  Google Scholar 

  • Zhu YL, Song QJ, Hyten DL, Van Tassell CP, Matukumalli LK, Grimm DR, Hyatt SM, Fickus EW, Young ND, Cregan PB (2003) Single-nucleotide polymorphisms in soybean. Genetics 163:1123–1134

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. David Hyten and Dr. Perry Cregan (USDA-ARS, Beltsville, MD) for providing the fatty acid sequence-based and physical-map based primer sequences on Gm05, Gm17, Gm18, and Gm19. This research was supported by funds provided to the Georgia Agricultural Experiment Stations and grants provided by the United Soybean Board.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo-Keun Ha.

Additional information

Bo-Keun Ha and Maria J. Monteros contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 173 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ha, BK., Monteros, M.J. & Boerma, H.R. Development of SNP assays associated with oleic acid QTLs in N00-3350 soybean. Euphytica 176, 403–415 (2010). https://doi.org/10.1007/s10681-010-0225-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-010-0225-9

Keywords

Navigation