Skip to main content
Log in

Symmetry properties for a generalised thin film equation

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

Symmetry properties are presented for a fourth-order parabolic equation written in conservation form. It was introduced in the literature as a generalisation of the fourth-order thin film equation. We derive equivalence transformations, Lie symmetries, potential symmetries, non-classical symmetries and potential non-classical symmetries. A chain of such equations is introduced. We conclude by presenting similar results for the third-order equation of this chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Myers TG (1998) Thin films with high surface tension. SIAM Rev 40: 441–462

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. King JR (2001) Two generalisations of the thin film equation. Math Comput Model 34: 737–756

    Article  MATH  Google Scholar 

  3. Bertozzi AL, Pugh M (1998) Long-wave instabilities and saturation in thin film equations. Commun Pure Appl Math 51: 625–661

    Article  MathSciNet  Google Scholar 

  4. Constantin P, Dupont TF, Goldstein PE, Kadanoff LP, Shelley MJ, Zhou SM (1993) Droplet breakup in a model of the Hele-Shaw cell. Phys Rev E 47: 4169–4181

    Article  MathSciNet  ADS  Google Scholar 

  5. Hocherman T, Rosenau P (1993) On KS-type equations describing the evolution and rupture of a liquid interface. Physica D 67: 113–125

    Article  ADS  MATH  Google Scholar 

  6. King JR, Bowen M (2001) Moving boundary problem and non-uniqueness for thin film equations. Eur J Appl Math 7: 321–356

    MathSciNet  Google Scholar 

  7. Smyth NF, Hill JM (1988) High-order nonlinear diffusion. IMA J Appl Math 40: 73–86

    Article  MathSciNet  MATH  Google Scholar 

  8. Sophocleous C, Leach PGL (2012) Thin films: increasing the complexity of the model. Int J Bifur Chaos Appl Sci Eng 22: 1250212

    Article  MathSciNet  Google Scholar 

  9. Ibragimov, NH (eds) (1994) Symmetries, exact solutions and conservation laws: Lie group analysis of differential equations, vol 1. CRC, Boca Raton, FL

    MATH  Google Scholar 

  10. Ibragimov, NH (eds) (1995) Applications in engineering and physical sciences: Lie group analysis of differential equations, vol 2. CRC, Boca Raton, FL

  11. Ibragimov, NH (eds) (1996) New trends in theoretical developments and computational methods: Lie group analysis of differential equations, vol 3. CRC, Boca Raton, FL

    Google Scholar 

  12. Ovsiannikov LV (1959) Group relations of the equation of non-linear heat conductivity. Dokl Akad Nauk SSSR 125:492–495 (in Russian)

    Google Scholar 

  13. Ivanova NM, Popovych RO, Sophocleous C (2010) Group analysis of variable coefficient diffusion–convection equations. I: Enhanced group classification. Lobachevskii J Math 31: 100–122

    Article  MathSciNet  MATH  Google Scholar 

  14. Vaneeva OO, Popovych RO, Sophocleous C (2009) Enhanced group analysis and exact solutions of variable coefficient semilinear diffusion equations with a power source. Acta Appl Math 106: 1–46

    Article  MathSciNet  MATH  Google Scholar 

  15. Vaneeva OO, Johnpillai AG, Popovych RO, Sophocleous C (2007) Enhanced group analysis and conservation laws of variable coefficient reaction–diffusion equations with power nonlinearities. J Math Anal Appl 330: 1363–1386

    Article  MathSciNet  MATH  Google Scholar 

  16. Bluman GW, Kumei S (1989) Symmetries and differential equations. Springer, New York

    Book  MATH  Google Scholar 

  17. Arrigo DJ, Hill JM (1995) Nonclassical symmetries for nonlinear diffusion and absorption. Stud Appl Math 94: 21–39

    MathSciNet  MATH  Google Scholar 

  18. Gandarias ML (2001) New symmetries for a model of fast diffusion. Phys Lett A 286: 153–160

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Popovych RO, Vaneeva OO, Ivanova NM (2007) Potential nonclassical symmetries and solutions of fast diffusion equation. Phys Lett A 362: 166–173

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Lie S (1884) Klassifikation und Integration von gewohnlichen Differentialgleichungen zwischen x, y, die eine Gruppe von Transformationen gestatten IV. Archiv for Matematik og Naturvidenskab 9:431-448. Reprinted in Lie’s Ges. Abhandl. 5, paper XVI, 1924, 432–446

  21. Ovsiannikov LV (1982) Group analysis of differential equations. Academic, New York

    MATH  Google Scholar 

  22. Kingston JG, Sophocleous C (1998) On form-preserving point transformations of partial differential equations. J Phys A 31: 1597–1619

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Popovych RO, Ivanova NM (2004) New results on group classification of nonlinear diffusion–convection equations. J Phys A 37: 7547–7565

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Ibragimov NH (2004) Equivalence groups and invariants of linear and non-linear equations. Arch ALGA 1: 9–69

    Google Scholar 

  25. Popovych RO, Ivanova NM (2005) Potential equivalence transformations for nonlinear diffusion-convection equations. J Phys A 38: 3145–3155

    Article  MathSciNet  MATH  Google Scholar 

  26. Sophocleous C (1999) Continuous and discrete transformations of a one-dimensional porous medium equation. J Nonlinear Math Phys 6: 355–364

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Kingston JG, Sophocleous C (1991) On point transformations of a generalised Burgers equation. Phys Lett A 155: 15–19

    Article  MathSciNet  ADS  Google Scholar 

  28. Popovych RO, Kunzinger M, Eshraghi H (2010) Admissible transformations and normalized classes of nonlinear Schrödinger equations. Acta Appl Math 109: 315–359

    Article  MathSciNet  MATH  Google Scholar 

  29. Bluman GW, Anco SC (2002) Symmetry and integration methods for differential equations. Springer, New York

    MATH  Google Scholar 

  30. Bluman GW, Cheviakov AF, Anco SC (2010) Applications of symmetry methods to partial differential equations. Springer, New York

    Book  MATH  Google Scholar 

  31. Ibragimov NH (1999) Elementary Lie group analysis and ordinary differential equations. Wiley, New York

    MATH  Google Scholar 

  32. Olver P (1986) Applications of Lie groups to differential equations. Springer, New York

    Book  MATH  Google Scholar 

  33. Bluman GW, Reid GJ, Kumei S (1988) New classes of symmetries for partial differential equations. J Math Phys 29: 806–811

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Popovych RO, Seryeyev A (2010) Consrvation laws and normal forms of evolution equations. Phys Lett A 374: 2210–2217

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Ivanova NM, Popovych RO, Sophocleous C, Vaneeva OO (2009) Conservation laws and hierarchies of potential symmetries for certain diffusion equations. Physica A 388: 343–356

    Article  MathSciNet  ADS  Google Scholar 

  36. Sophocleous C (2005) Further transformation properties of generalised inhomogeneous nonlinear diffusion equations with variable coefficients. Physica A 345: 457–471

    ADS  Google Scholar 

  37. Bluman GW, Cole JD (1969) The general similarity solution of the heat equation. J Math Mech 18: 1025–1042

    MathSciNet  MATH  Google Scholar 

  38. Fushchich WI, Tsyfra IM (1987) On a reduction and solutions of the nonlinear wave equations with broken symmetry. J Phys A 20: L45–L48

    Article  ADS  MATH  Google Scholar 

  39. Zhdanov RZ, Tsyfra IM, Popovych RO (1999) A precise definition of reduction of partial differential equations. J Math Anal Appl 238: 101–123

    Article  MathSciNet  MATH  Google Scholar 

  40. Fushchich WI, Serov NI (1988) Conditional invariance and exact solutions of a nonlinear acoustics equation. Dokl Akad Nauk Ukrain SSR A 10:27-31 (in Russian)

    Google Scholar 

  41. Fushchich WI, Shtelen WM, Serov MI, Popovych RO (1992) Q-conditional symmetry of the linear heat equation. Proc Acad Sci Ukraine 12: 28–33

    MathSciNet  Google Scholar 

  42. Levi D, Winternitz P (1989) Non-classical symmetry reduction: example of the Boussinesq equation. J Phys A 22: 2915–2924

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. Polyanin AD, Zaitsev VF (2003) Handbook of exact solutions for ordinary differential equations. Chapman & Hall/CRC, Boca Raton

    MATH  Google Scholar 

  44. Oron A, Rosenau P (1986) Some symmetries of the nonlinear heat and wave equations. Phys Lett A 118: 172–176

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. Calogero F (1991) Why are certain partial differential equations both widely applicable and integrable?. In: Zakharov VE (eds) What is integrability? Springer series in nonlinear dynamics. Springer, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christodoulos Sophocleous.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charalambous, K., Sophocleous, C. Symmetry properties for a generalised thin film equation. J Eng Math 82, 109–124 (2013). https://doi.org/10.1007/s10665-012-9577-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-012-9577-6

Keywords

Navigation