Skip to main content
Log in

A docking-based receptor library of antibiotics and its novel application in predicting chronic mixture toxicity for environmental risk assessment

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

As organisms are typically exposed to chemical mixtures over long periods of time, chronic mixture toxicity is the best way to perform an environmental risk assessment (ERA). However, it is difficult to obtain the chronic mixture toxicity data due to the high expense and the complexity of the data acquisition method. Therefore, an approach was proposed in this study to predict chronic mixture toxicity. The acute (15 min exposure) and chronic (24 h exposure) toxicity of eight antibiotics and trimethoprim to Vibrio fischeri were determined in both single and binary mixtures. The results indicated that the risk quotients (RQs) of antibiotics should be based on the chronic mixture toxicity. To predict the chronic mixture toxicity, a docking-based receptor library of antibiotics and the receptor-library-based quantitative structure–activity relationship (QSAR) model were developed. Application of the developed QSAR model to the ERA of antibiotic mixtures demonstrated that there was a close affinity between RQs based on the observed chronic toxicity and the corresponding RQs based on the predicted data. The average coefficients of variations were 46.26 and 34.93 % and the determination coefficients (R 2) were 0.999 and 0.998 for the low concentration group and the high concentration group, respectively. This result convinced us that the receptor library would be a promising tool for predicting the chronic mixture toxicity of antibiotics and that it can be further applied in ERA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ERA:

Environment risk assessment

MEC:

Measured environment concentration

RQ:

Risk quotient

QSAR:

Quantitative structure–activity relationship

US EPA:

United States Environmental Protection Agency

SA:

Sulfonamide

TMP:

Trimethoprim

TU:

Toxicity unit

TC:

Tetracycline

References

  • Achari, A. (1997). Crystal structure of the anti-bacterial sulfonamide drug target dihydropteroate synthase. Nature Structural & Molecular Biology, 4(6), 490–497.

    Article  CAS  Google Scholar 

  • Ahlers, J., Riedhammer, C., Vogliano, M., Ebert, R., Kühne, R., & Schüürmann, G. (2006). Acute to chronic ratios in aquatic toxicity-variation across trophic levels and relationship with chemical structure. Environmental Toxicology and Chemistry, 25(11), 2937–2945.

    Article  CAS  Google Scholar 

  • Altenburger, R., Nendza, M., & Schüürmann, G. (2003). Mixture toxicity and its modeling by quantitative structure/activity relationships. Environmental Toxicology and Chemistry, 22(8), 1900–1915.

    Article  CAS  Google Scholar 

  • Appling, D. R. (1991). Compartmentation of folate-mediated one-carbon metabolism in eukaryotes. The FASEB Journal, 5(12), 2645–2651.

    CAS  Google Scholar 

  • Artsimovitch, I., Vassylyeva, M. N., Svetlov, D., Svetlov, V., Perederina, A., Igarashi, N., et al. (2005). Allosteric modulation of the RNA polymerase catalytic reaction is an essential component of transcription control by rifamycins. Cell, 122(3), 351–363.

    Article  CAS  Google Scholar 

  • Atkinson, A. C. (1985). Plots, transformations, and regression. Oxford: Oxford University Press.

    Google Scholar 

  • Backhaus, T., Froehner, K., Altenburger, R., & Grimme, L. (1997). Toxicity testing with Vibrio fischeri: a comparison between the long term (24 h) and the short term (30 min) bioassay. Chemosphere, 35(12), 2925–2938.

    Article  CAS  Google Scholar 

  • Backhaus, T., Scholze, M., & Grimme, L. H. (2000). The single substance and mixture toxicity of quinolones to the bioluminescent bacterium Vibrio fischeri. Aquatic Toxicology, 49(1–2), 49–61.

    Article  CAS  Google Scholar 

  • Bairoch, A., Apweiler, R., Wu, C., Barker, W., Boeckmann, B., Ferro, S., et al. (2005). The universal protein resource (UniProt). Nucleic Acids Research, 33(Database Issue), D154–D159.

    Article  CAS  Google Scholar 

  • Berman, H., Battistuz, T., Bhat, T., Bluhm, W., Bourne, P., Burkhardt, K., et al. (2002). The protein data bank. Acta Crystallographica Section D: Biological Crystallography, 58(6), 899–907.

    Article  Google Scholar 

  • Blaschke, U., Paschke, A., Rensch, I., & Schüürmann, G. (2010). Acute and chronic toxicity toward the bacteria Vibrio fischeri of organic narcotics and epoxides: structural alerts for epoxide excess toxicity. Chemical Research In Toxicology, 23(12), 1936–1946.

    Article  CAS  Google Scholar 

  • Brock, T., Arts, G. H. P., Maltby, L., & Van den Brink, P. J. (2006). Aquatic risks of pesticides, ecological protection goals, and common aims in European Union legislation. Integrated Environmental Assessment and Management, 2(4), e20–e46.

    Article  Google Scholar 

  • Broderius, S., Kahl, M., & Hoglund, M. (1995). Use of joint toxic response to define the primary mode of toxic action for diverse industrial organic chemicals. Environmental Toxicology and Chemistry, 14(9), 1591–1605.

    Article  CAS  Google Scholar 

  • Brodersen, D. E., Clemons, W. M., Jr., Carter, A. P., Morgan-Warren, R. J., Wimberly, B. T., & Ramakrishnan, V. (2000). The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit. Cell, 103(7), 1143–1154.

    Article  CAS  Google Scholar 

  • Bushby, S., & Hitchings, G. (1968). Trimethoprim, a sulphonamide potentiator. British journal of pharmacology and chemotherapy, 33(1), 72–90.

    Article  CAS  Google Scholar 

  • Cassee, F. R., Groten, J. P., Bladeren, P. J., & Feron, V. J. (1998). Toxicological evaluation and risk assessment of chemical mixtures. CRC Critical Reviews in Toxicology, 28(1), 73–101.

    Article  CAS  Google Scholar 

  • Chapman, P. M., Fairbrother, A., & Brown, D. (1998). A critical evaluation of safety (uncertainty) factors for ecological risk assessment. Environmental Toxicology and Chemistry, 17(1), 99–108.

    Article  CAS  Google Scholar 

  • Chen, W. R., & Huang, C. H. (2010). Adsorption and transformation of tetracycline antibiotics with aluminum oxide. Chemosphere, 79(8), 779–785.

    Article  CAS  Google Scholar 

  • Cleuvers, M. (2004). Mixture toxicity of the anti-inflammatory drugs diclofenac, ibuprofen, naproxen, and acetylsalicylic acid. Ecotoxicology and Environmental Safety, 59(3), 309–315.

    Article  CAS  Google Scholar 

  • Cronin, M. T. D., & Dearden, J. C. (1995). QSAR in toxicology. 3. Prediction of chronic toxicities. Quantitative Structure–Activity Relationships, 14(4), 329–334.

    Article  CAS  Google Scholar 

  • Cronin, M. T. D., & Schultz, T. W. (1997). Validation of Vibrio fisheri acute toxicity data: mechanism of action-based QSARs for non-polar narcotics and polar narcotic phenols. Science of the Total Environment, 204(1), 75–88.

    Article  CAS  Google Scholar 

  • Cunningham, V. (2004). Special characteristics of pharmaceuticals related to environmental fate. Pharmaceuticals in the Environment, 2, 13–24.

    Article  Google Scholar 

  • Dahlberg, A. E. (1989). The functional role of ribosomal RNA in protein synthesis. Cell, 57(4), 525–529.

    Article  CAS  Google Scholar 

  • De Liguoro, M., Fioretto, B., Poltronieri, C., & Gallina, G. (2009). The toxicity of sulfamethazine to Daphnia magna and its additivity to other veterinary sulfonamides and trimethoprim. Chemosphere, 75(11), 1519–1524.

    Article  Google Scholar 

  • De Zwart, D., & Slooff, W. (1983). The Microtox as an alternative assay in the acute toxicity assessment of water pollutants. Aquatic Toxicology, 4(2), 129–138.

    Article  Google Scholar 

  • Dom, N., Penninck, M., Knapen, D., & Blust, R. (2012). Discrepancies in the acute versus chronic toxicity of compounds with a designated narcotic mechanism. Chemosphere, 87(7), 742–749.

    Article  CAS  Google Scholar 

  • Drlica, K., & Zhao, X. (1997). DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiology and Molecular Biology Reviews, 61(3), 377–392.

    CAS  Google Scholar 

  • Dunkle, J. A., Xiong, L., Mankin, A. S., & Cate, J. H. D. (2010). Structures of the Escherichia coli ribosome with antibiotics bound near the peptidyl transferase center explain spectra of drug action. Proceedings of the National Academy of Sciences, 107(40), 17152–17157.

    Article  CAS  Google Scholar 

  • Edwards, M. J., Flatman, R. H., Mitchenall, L. A., Stevenson, C. E. M., Le, T. B. K., Clarke, T. A., et al. (2009). A crystal structure of the bifunctional antibiotic simocyclinone D8, bound to DNA gyrase. Science, 326(5958), 1415–1418.

    Article  CAS  Google Scholar 

  • Eguchi, K., Nagase, H., Ozawa, M., Endoh, Y. S., Goto, K., Hirata, K., et al. (2004). Evaluation of antimicrobial agents for veterinary use in the ecotoxicity test using microalgae. Chemosphere, 57(11), 1733–1738.

    Article  CAS  Google Scholar 

  • Eriksson, L., Jaworska, J., Worth, A. P., Cronin, M. T. D., McDowell, R. M., & Gramatica, P. (2003). Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs. Environmental Health Perspectives, 111(10), 1361–1375.

    Article  CAS  Google Scholar 

  • Escher, B. I., & Hermens, J. L. M. (2002). Modes of action in ecotoxicology: their role in body burdens, species sensitivity, QSARs, and mixture effects. Environmental Science & Technology, 36(20), 4201–4217.

    Google Scholar 

  • Faust, M., Altenburger, R., Backhaus, T., Blanck, H., Boedeker, W., Gramatica, P., et al. (2003). Joint algal toxicity of 16 dissimilarly acting chemicals is predictable by the concept of independent action. Aquatic Toxicology, 63(1), 43–63.

    Article  CAS  Google Scholar 

  • Finney, D. (1971). Probit analysis (3rd ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Fratev, F., Piparo, E. L., Benfenati, E., & Mihaylova, E. (2007). Toxicity study of allelochemical-like pesticides by a combination of 3D-QSAR, docking, local binding energy (LBE) and GRID approaches. SAR and QSAR in Environmental Research, 18(7–8), 675–692.

    Article  CAS  Google Scholar 

  • Garcia-Galan, M. J., Garrido, T., Fraile, J., Ginebreda, A., Diaz-Cruz, M. S., & Barcelo, D. (2010). Simultaneous occurrence of nitrates and sulfonamide antibiotics in two ground water bodies of Catalonia (Spain). Journal of Hydrology, 383(1–2), 93–101.

    Article  CAS  Google Scholar 

  • Geladi, P., & Kowalski, B. R. (1986). Partial least-squares regression: a tutorial. Analytica Chimica Acta, 185, 1–17.

    Article  CAS  Google Scholar 

  • Golbraikh, A., & Tropsha, A. (2002). Beware of q 2! Journal of Molecular Graphics and Modelling, 20(4), 269–276.

    Article  CAS  Google Scholar 

  • Gschwend, D. A., Good, A. C., & Kuntz, I. D. (1996). Molecular docking towards drug discovery. Journal of Molecular Recognition, 9(2), 175–186.

    Article  CAS  Google Scholar 

  • Henry, R. (1943). The mode of action of sulfonamides. Microbiology and Molecular Biology Reviews, 7(4), 175–262.

    CAS  Google Scholar 

  • Hertzberg, R. C., & Teuschler, L. K. (2002). Evaluating quantitative formulas for dose–response assessment of chemical mixtures. Environmental Health Perspectives, 110(Suppl 6), 965–970.

    Article  CAS  Google Scholar 

  • Hirsch, R., Ternes, T., Haberer, K., & Kratz, K. (1999). Occurrence of antibiotics in the aquatic environment. The Science of the Total Environment, 225(1–2), 109–118.

    Article  CAS  Google Scholar 

  • Hladky, S., & Haydon, D. (1972). Ion transfer across lipid membranes in the presence of gramicidin A: I. Studies of the unit conductance channel. Biochimica et Biophysica Acta (BBA)—Biomembranes, 274(2), 294–312.

    Article  CAS  Google Scholar 

  • Ishino, F., Mitsui, K., Tamaki, S., & Matsuhashi, M. (1980). Dual enzyme activities of cell wall peptidoglycan synthesis, peptidoglycan transglycosylase and penicillin-sensitive transpeptidase, in purified preparations of Escherichia coli penicillin-binding protein 1A. Biochemical and Biophysical Research Communications, 97(1), 287–293.

    Article  CAS  Google Scholar 

  • Jiang, L., Hu, X., Yin, D., Zhang, H., & Yu, Z. (2010). Occurrence, distribution and seasonal variation of antibiotics in the Huangpu River, Shanghai, China. Chemosphere, 82(6), 822–828.

    Article  Google Scholar 

  • Jiang, L., Lin, Z., Hu, X., & Yin, D. (2010). Toxicity prediction of antibiotics on luminescent bacteria, Photobacterium phosphoreum, based on their quantitative structure activity relationship models. Bulletin Of Environmental Contamination and Toxicology, 85(6), 550–555.

    Article  CAS  Google Scholar 

  • Kümmerer, K. (2009). Antibiotics in the aquatic environment—a review—part I. Chemosphere, 75(4), 417–434.

    Article  Google Scholar 

  • Kaiser, J. (2003). Hormesis: sipping from a poisoned chalice. Science, 302(5644), 376–379.

    Article  CAS  Google Scholar 

  • Kim, Y., Choi, K., Jung, J., Park, S., Kim, P. G., & Park, J. (2007). Aquatic toxicity of acetaminophen, carbamazepine, cimetidine, diltiazem and six major sulfonamides, and their potential ecological risks in Korea. Environment International, 33(3), 370–375.

    Article  CAS  Google Scholar 

  • Kolpin, D. W., Furlong, E. T., Meyer, M. T., Thurman, E. M., Zaugg, S. D., Barber, L. B., et al. (2002). Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999–2000: a national reconnaissance. Environmental Science & Technology, 36(6), 1202–1211.

    Article  CAS  Google Scholar 

  • Kummerer, K. (2003). Significance of antibiotics in the environment. Journal of Antimicrobial Chemotherapy, 52(1), 5–7.

    Article  CAS  Google Scholar 

  • Kummerer, K. (2009a). Antibiotics in the aquatic environment—a review—part I. Chemosphere, 75(4), 417–434.

    Article  Google Scholar 

  • Kummerer, K. (2009b). Antibiotics in the aquatic environment—a review—part II. Chemosphere, 75(4), 435–441.

    Article  Google Scholar 

  • Lambert, M. P., & Neuhaus, F. C. (1972). Mechanism of d-cycloserine action: alanine racemase from Escherichia coli W. Journal of Bacteriology, 110(3), 978–987.

    CAS  Google Scholar 

  • Li, F., Xie, Q., Li, X., Li, N., Chi, P., Chen, J., et al. (2010). Hormone activity of hydroxylated polybrominated diphenyl ethers on human thyroid receptor-β: in vitro and in silico investigations. Environmental Health Perspectives, 118(5), 602–606.

    Article  CAS  Google Scholar 

  • Lin, Z., Shi, P., Gao, S., Wang, L., & Yu, H. (2003). Use of partition coefficients to predict mixture toxicity. Water Research, 37(9), 2223–2227.

    Article  CAS  Google Scholar 

  • Lindsey, M. E., Meyer, M., & Thurman, E. (2001). Analysis of trace levels of sulfonamide and tetracycline antimicrobials in groundwater and surface water using solid-phase extraction and liquid chromatography/mass spectrometry. Analytical Chemistry, 73(19), 4640–4646.

    Article  CAS  Google Scholar 

  • Lovell, S. C., Davis, I. W., Arendall, W. B., III, de Bakker, P. I. W., Word, J. M., Prisant, M. G., et al. (2003). Structure validation by C geometry, and C deviation. Proteins: Structure, Function, and Genetics, 50(3), 437–450.

    Article  CAS  Google Scholar 

  • McCarty, L., Hodson, P., Craig, G., & Kaiser, K. (1985). The use of quantitative structure–activity relationships to predict the acute and chronic toxicities of organic chemicals to fish. Environmental Toxicology and Chemistry, 4(5), 595–606.

    Article  CAS  Google Scholar 

  • McFarland, J. W., Berger, C. M., Froshauer, S. A., Hayashi, S. F., Hecker, S. J., Jaynes, B. H., et al. (1997). Quantitative structure–activity relationships among macrolide antibacterial agents: in vitro and in vivo potency against Pasteurella multocida. Journal of Medicinal Chemistry, 40(9), 1340–1346.

    Article  CAS  Google Scholar 

  • Mekenyan, O., & Veith, G. (1993). Relationships between descriptors for hydrophobicity and soft electrophilicity in predicting toxicity. SAR and QSAR in Environmental Research, 1(4), 335–344.

    Article  CAS  Google Scholar 

  • Meng, E. C., Shoichet, B. K., & Kuntz, I. D. (1992). Automated docking with grid-based energy evaluation. Journal of Computational Chemistry, 13(4), 505–524.

    Article  CAS  Google Scholar 

  • Mizutani, M. Y., & Itai, A. (2004). Efficient method for high-throughput virtual screening based on flexible docking: discovery of novel acetylcholinesterase inhibitors. Journal of Medicinal Chemistry, 47(20), 4818–4828.

    Article  CAS  Google Scholar 

  • Muegge, I. (2001). Effect of ligand volume correction on PMF scoring. Journal of Computational Chemistry, 22(4), 418–425.

    Google Scholar 

  • O'Brien, E., & Dietrich, D. (2004). Hindsight rather than foresight: reality versus the EU draft guideline on pharmaceuticals in the environment. Trends in Biotechnology, 22(7), 326–330.

    Article  Google Scholar 

  • Oefner, C., Bandera, M., Haldimann, A., Laue, H., Schulz, H., Mukhija, S., et al. (2009). Increased hydrophobic interactions of iclaprim with Staphylococcus aureus dihydrofolate reductase are responsible for the increase in affinity and antibacterial activity. Journal of Antimicrobial Chemotherapy, 63(4), 687–698.

    Article  CAS  Google Scholar 

  • Parvez, S., Venkataraman, C., & Mukherji, S. (2006). A review on advantages of implementing luminescence inhibition test (Vibrio fischeri) for acute toxicity prediction of chemicals. Environment International, 32(2), 265–268.

    Article  CAS  Google Scholar 

  • Peijnenburg, W. (1994). Structure–activity relationships for biodegradation: a critical review. Pure and Applied Chemistry, 66, 1931–1941.

    Article  CAS  Google Scholar 

  • Pence, H. E., & Williams, A. (2010). ChemSpider: an online chemical information resource. Journal of Chemical Education, 87(11), 1123–1124.

    Google Scholar 

  • Qiang, Z., & Adams, C. (2004). Potentiometric determination of acid dissociation constants (pK a ) for human and veterinary antibiotics. Water Research, 38(12), 2874–2890.

    Article  CAS  Google Scholar 

  • Rabinowitz, J. R., Goldsmith, M. R., Little, S. B., & Pasquinelli, M. A. (2008). Computational molecular modeling for evaluating the toxicity of environmental chemicals: prioritizing bioassay requirements. Environmental Health Perspectives, 116(5), 573–577.

    Google Scholar 

  • Raimondo, S., Montague, B. J., & Barron, M. G. (2007). Determinants of variability in acute to chronic toxicity ratios for aquatic invertebrates and fish. Environmental Toxicology and Chemistry, 26(9), 2019–2023.

    Article  CAS  Google Scholar 

  • Reece, R. J., Maxwell, A., & Wang, J. C. (1991). DNA gyrase: structure and function. Critical Reviews in Biochemistry and Molecular Biology, 26(3–4), 335–375.

    Article  CAS  Google Scholar 

  • Romero-Gonzalez, R., López-Martínez, J., Gomez-Milan, E., Garrido-Frenich, A., & Martinez-Vidal, J. (2007). Simultaneous determination of selected veterinary antibiotics in gilthead seabream (Sparus aurata) by liquid chromatography–mass spectrometry. Journal of Chromatography B, 857(1), 142–148.

    Article  CAS  Google Scholar 

  • Sainsbury, S., Bird, L., Rao, V., Shepherd, S. M., Stuart, D. I., Hunter, W. N., et al. (2010). Crystal structures of penicillin-binding protein 3 from Pseudomonas aeruginosa: comparison of native and antibiotic-bound forms. Journal of Molecular Biology, 405(1), 173–184.

    Article  Google Scholar 

  • Spassov, V., Flook, P., & Yan, L. (2008). LOOPER: a molecular mechanics-based algorithm for protein loop prediction. Protein Engineering, Design and Selection, 21(2), 91–100.

    Article  CAS  Google Scholar 

  • Sung, M. T., Lai, Y. T., Huang, C. Y., Chou, L. Y., Shih, H. W., Cheng, W. C., et al. (2009). Crystal structure of the membrane-bound bifunctional transglycosylase PBP1b from Escherichia coli. Proceedings of the National Academy of Sciences, 106(22), 8824–8829.

    Article  CAS  Google Scholar 

  • Tong, W., Hong, H., Xie, Q., Shi, L., Fang, H., & Perkins, R. (2005). Assessing QSAR limitations—a regulatory perspective. Current Computer-Aided Drug Design, 1(2), 195–205.

    Article  CAS  Google Scholar 

  • U.S. EPA (1991). Technical support document for water quality-based toxics control. In EPA/505/2-90-001 (Ed.). Washington, DC.

  • U.S. EPA (2000). Supplementary guidance for conducting health risk assessment of chemical mixtures. In E. 630/R-00/002 (Ed.). Washington, DC.

  • Umetrics, A. (2002). User’s guide to SIMCA-P. SIMCA-P+, Version, 10.

  • Wang, B., Yu, G., Zhang, Z., Hu, H., & Wang, L. (2006). Quantitative structure–activity relationship and prediction of mixture toxicity of alkanols. Chinese Science Bulletin, 51(22), 2717–2723.

    Article  CAS  Google Scholar 

  • Wang, Y., Chen, J., Li, F., Qin, H., Qiao, X., & Hao, C. (2009). Modeling photoinduced toxicity of PAHs based on DFT-calculated descriptors. Chemosphere, 76(7), 999–1005.

    Article  CAS  Google Scholar 

  • Waxman, D. J., & Strominger, J. L. (1983). Penicillin-binding proteins and the mechanism of action of beta-lactam antibiotics1. Annual Review of Biochemistry, 52(1), 825–869.

    Article  CAS  Google Scholar 

  • Wu, D., Hu, T., Zhang, L., Chen, J., Du, J., Ding, J., et al. (2008). Residues Asp164 and Glu165 at the substrate entryway function potently in substrate orientation of alanine racemase from E. coli: enzymatic characterization with crystal structure analysis. Protein Science, 17(6), 1066–1076.

    Article  CAS  Google Scholar 

  • Xu, S., & Nirmalakhandan, N. (1998). Use of QSAR models in predicting joint effects in multi-component mixtures of organic chemicals. Water Research, 32(8), 2391–2399.

    Article  CAS  Google Scholar 

  • Yang, R., Thomas, R., Gustafson, D., Campain, J., Benjamin, S., Verhaar, H., et al. (1998). Approaches to developing alternative and predictive toxicology based on PBPK/PD and QSAR modeling. Environmental Health Perspectives, 106(Suppl 6), 1385–1393.

    Article  CAS  Google Scholar 

  • Zhang, H. C., Hu, X. L., Yin, D. Q., & Lin, Z. F. (2010). Development of molecular docking-based binding energy to predict the joint effect of BPA and its analogs. Human & Experimental Toxicology, 30(4), 4318–4327.

    Google Scholar 

  • Zou, X., Lin, Z., Deng, Z., Yin, D., & Zhang, Y. (2012). The joint effects of sulfonamides and their potentiator on Photobacterium phosphoreum: differences between the acute and chronic mixture toxicity mechanisms. Chemosphere, 86(1), 30–35.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is funded by the Foundation of the State Key Laboratory of Pollution Control and Resource Reuse, China (PCRRK09003,PCRRY11003), the National Natural Science Foundation of China (20977067,201177092), the New Century Excellent Talents in University (20100472), the Specialized Research Fund for the Doctoral Program of Higher Education (20100072110034985), the Fundamental Research Funds for the Central Universities (0400219181), and the R&D Special Fund for Public Welfare Industry (201109048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhifen Lin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Supplementary material. (DOC 919 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zou, X., Zhou, X., Lin, Z. et al. A docking-based receptor library of antibiotics and its novel application in predicting chronic mixture toxicity for environmental risk assessment. Environ Monit Assess 185, 4513–4527 (2013). https://doi.org/10.1007/s10661-012-2885-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-2885-5

Keywords

Navigation