Skip to main content

Advertisement

Log in

Can Basin Land Use Effects on Physical Characteristics of Streams Be Determined at Broad Geographic Scales?

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The environmental setting (e.g., climate, topography, geology) and land use affect stream physical characteristics singly and cumulatively. At broad geographic scales, we determined the importance of environmental setting and land use in explaining variation in stream physical characteristics. We hypothesized that as the spatial scale decreased from national to regional, land use would explain more of the variation in stream physical characteristics because environmental settings become more homogeneous. At a national scale, stepwise linear regression indicated that environmental setting was more important in explaining variability in stream physical characteristics. Although statistically discernible, the amount of variation explained by land use was not remarkable due to low partial correlations. At level II ecoregion spatial scales (southeastern USA plains, central USA plains, and a combination of the western Cordillera and the western interior basins and ranges), environmental setting variables were again more important predictors of stream physical characteristics, however, as the spatial scale decreased from national to regional, the portion of variability in stream physical characteristics explained by basin land use increased. Development of stream habitat indicators of land use will depend upon an understanding of relations between stream physical characteristics and environmental factors at multiple spatial scales. Smaller spatial scales will be necessary to reduce the confounding effects of variable environmental settings before the effects of land use can be reliably assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allan, J. D. (2004). Landscapes and riverscapes: The influence of land use on stream ecosystems. Annual Review of Ecology and Systematics, 35, 257–284.

    Article  Google Scholar 

  • Allan, J. D., Erickson, D. L., & Fay, J. (1997). The influence of catchment land use on stream integrity across multiple spatial scales. Freshwater Biology, 37, 149–161.

    Article  Google Scholar 

  • Anderson, J. R., Hardy, E. E., Roach, J. T., & Witmer, R. E. (1976). A land use and land cover classification system for use with remote sensor data. Professional Paper 964, US Geological Survey, Reston, Virginia.

  • Booth, D. B. (1990). Stream-channel incision following drainage basin urbanization. Water Resources Bulletin, 26, 407–417.

    Google Scholar 

  • Fitzpatrick, F. A., Waite, I. R., D’Arconte, P., Meador, M. R., Maupin, M. A., & Gurtz, M. E. (1998). Revised methods for characterizing stream habitat in the National Water-Quality Assessment Program. Water-Resource Investigations Report 98–4052, US Geological Survey, Raleigh, North Carolina.

  • Frimpong, E. A., Sutton, T. M., Engel, B. A., & Simon, T. P. (2005). Spatial-scale effects on relative importance of physical habitat predictors of stream health. Environmental Management, 36, 899–917.

    Article  Google Scholar 

  • Frissell, C. A., Liss, W. J., Warren, C. E., & Hurley, M. D. (1986). A hierarchical framework for stream habitat classification: Viewing streams in a watershed context. Environmental Management, 10, 199–214.

    Article  Google Scholar 

  • Goldstein, R. M., Wang, L., Simon, T. P., & Stewart, P. M. (2002). Development of a stream habitat index for the Northern lakes and forests ecoregion. North American Journal of Fisheries Management, 22, 452–464.

    Article  Google Scholar 

  • Gregory, K. J., Gurnell, A. M., Hill, C. T., & Tooth, S. (1994). Stability of the pool-riffle sequence in changing river channels. Regulated Rivers: Research and Management, 9, 35–43.

    Article  Google Scholar 

  • H. John Heinz III Center for Science, Economics, and the Environment (2002). The state of the nation’s ecosystems: Measuring the lands, waters, and living resources of the United States (p. 270). New York: Cambridge University Press.

    Google Scholar 

  • Harding, J. S., Benfield, E. F., Bolstad, P. V., Helfman, G. S., & Jones, E. B. D. (1998). Stream biodiversity: The ghost of land use past. Proceedings of the National Academy of Sciences of the United States of America, 95, 14843–14847.

    Article  CAS  Google Scholar 

  • Hawkins, C. P., Norris, R. H., Gerritsen, J., Hughes, R. M., Jackson, S. K., Johnson, R. K., et al. (2000). Evaluation of the use of landscape classifications for the prediction of freshwater biota: Synthesis and recommendations. Journal of the North American Benthological Society, 19, 541–556.

    Article  Google Scholar 

  • Hughes, R. M., & Gammon, J. D. (1987). Longitudinal changes in fish assemblages and water quality in the Willamette River, Oregon. Transactions of the American Fisheries Society, 116, 196–209.

    Article  Google Scholar 

  • Kaufmann, P. R., & Hughes, R. M. (2006). Geomorphic and anthropogenic influences on fish and amphibians in Pacific Northwest Coastal Streams. In R. M. Hughes, L. Wang, & P. W. Seelbach (Eds.), Influence of landscapes on stream habitats and biological assemblages. American Fisheries Society Symposium 48:429–455, Bethesda, Maryland.

  • Lammert, M., & Allan, J. D. (1999). Assessing biotic integrity of streams: Effects of scale in measuring the influence of land use/cover and habitat structure on fish and macroinvertebrates. Environmental Management, 23, 257–270.

    Article  Google Scholar 

  • Leahy, P. P., Ryan, B. J., & Johnson, A. I. (1993). An introduction to the US Geological Survey’s National Water-Quality Assessment Program. Water Resources Bulletin, 29, 529–532.

    Google Scholar 

  • Lee, K. E., Goldstein, R. M., & Hanson, P. E. (2001). Relation between fish communities and riparian zone conditions at two spatial scales. Journal of the American Water Resources Association, 37, 1465–1473.

    Google Scholar 

  • Legendre, P., & Legendre, L. (1998). Numerical ecology. Developments in environmental modelling, 20. Amsterdam: Elsevier.

    Google Scholar 

  • Leopold, L. B., Miller, M. G., & Miller, J. P. (1964). Fluvial processes in geomorphology. San Francisco, California: Freeman.

    Google Scholar 

  • Meador, M. R., & Goldstein, R. M. (2003). Assessing water quality at large geographic scales: Relations among land use, water physicochemistry, riparian condition, and fish community structure. Environmental Management, 31, 504–517.

    Article  Google Scholar 

  • Naiman, R. J., Johnston, C. A., & Kelley, J. C. (1998). Alteration of North American streams by beaver. Bioscience, 38, 753–762.

    Article  Google Scholar 

  • National Elevation Dataset (NED) (2004). Retrieved from http://www.gisdata.usgs.gov/ned/.

  • National Hydrography Dataset (NHD) (2004). Retrieved from http://www.nhd.usgs.gov/.

  • National Land Cover Dataset (NLCD) (2004). National land cover characterization. Retrieved from http://www.landcover.usgs.gov/natllandcover.asp.

  • National Research Council (2000). Ecological indicators for the nation. Washington, District of Columbia: National Academy, 198 pp.

    Google Scholar 

  • National Water-Quality Assessment Program (NAWQA) (2004). Retrieved from http://www.water.usgs.gov/nawqa.

  • Neller, R. J. (1988). A comparison of channel erosion in small urban and rural catchments, Armidale, New South Wales. Earth Surface Processes and Landforms, 13, 1–7.

    Article  Google Scholar 

  • Nerbonne, B. A., & Vondracek B. (2001). Effects of local land use on physical habitat, benthic macroinvertebrates, and fish in the Whitewater River, Minnesota, USA. Environmental Management, 28, 87–99.

    Article  CAS  Google Scholar 

  • Omernik, J. M. (1987). Aquatic ecoregions of the conterminous United States. Annals of the Association of American Geographers, 77, 118–125.

    Article  Google Scholar 

  • Omernik, J. M., & Gallant, A. L. (1988). Ecoregions of the upper Midwest states, US. Environmental Protection Agency, EPA/600/3–88/037, 56 p.

  • Paul, M. J., & Meyer, J. L. (2001). Streams in the urban landscape. Annual Review of Ecology and Systematics, 32, 33–65.

    Article  Google Scholar 

  • Richards, C., Johnson, L. B., & Host, G. E. (1996). Landscape-scale influences on stream habitats and biota. Canadian Journal of Fisheries and Aquatic Sciences, 53(Suppl 1), 295–310.

    Article  Google Scholar 

  • Roth, N. E., Allan, J. D., & Erickson, D. L. (1996). Landscape influences on stream biotic integrity assessed at multiple spatial scales. Landscape Ecology, 11, 141–156.

    Article  Google Scholar 

  • Short, T. M., Giddings, E. M. P., Zappia, H., & Coles J. F. (2005). Urbanization effects on stream habitat characteristics in Boston, Massachusetts; Birmingham, Alabama; and Salt Lake City, Utah. In L. R. Brown, R. Gray, R. Hughes, & M. R. Meador (Eds.), Effects of urbanization on stream ecosystems (pp. 317–332). Bethesda, Maryland: American Fisheries Society.

    Google Scholar 

  • Stauffer, J. C., Goldstein, R. M., & Newman, R. M. (2000). Relationship of wooded riparian zones and runoff potential to fish community composition in agricultural streams. Canadian Journal of Fisheries and Aquatic Sciences, 57, 307–316.

    Article  Google Scholar 

  • Walser, C. A., & Bart, H. L. (1999). Influence of agriculture on in-stream habitat and fish community structure in Piedmont watersheds of the Chattahoochee River system. Ecology of Freshwater Fish, 8(4), 237–246.

    Article  Google Scholar 

  • Wang, L., Lyons, J., & Kanehl, P. (1998). Development and evaluation of a habitat rating system for low-gradient Wisconsin streams. North American Journal of Fisheries Management, 18, 775–785.

    Article  Google Scholar 

  • Wang, L., Lyons, J., Kanehl, P., & Gotti, R. (1997). Influences of watershed land use on habitat quality and biotic integrity in Wisconsin streams. Fisheries, 22, 6–12.

    Article  Google Scholar 

  • Weigel, B. M., Wang, L., Rassmussen, P. W., Butcher, J. T., Stewart, P. M., Simon, T. P., et al. (2003). Relative influence of variables at multiple spatial scales on stream macroinvertebrates in the Northern Lakes and Forests Ecoregion, USA. Freshwater Biology, 48, 1440–1461.

    Article  Google Scholar 

  • Zar, J. H. (1999). Biostatistical analysis, Fourth Edition. Upper Saddle River, New Jersey: Prentice Hall.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert M. Goldstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldstein, R.M., Carlisle, D.M., Meador, M.R. et al. Can Basin Land Use Effects on Physical Characteristics of Streams Be Determined at Broad Geographic Scales?. Environ Monit Assess 130, 495–510 (2007). https://doi.org/10.1007/s10661-006-9439-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-006-9439-7

Keywords

Navigation