Skip to main content

Advertisement

Log in

Toxicity of the amphoteric surfactant, cocamidopropyl betaine, to the marine macroalga, Ulva lactuca

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The degradation of the synthetic, amphoteric surfactant, cocamidopropyl betaine (CAPB) and its toxicity to the marine macroalga, Ulva lactuca, has been evaluated using several different physiological test end-points over different periods of exposure up to 120 h. Droplet surface angle measurements revealed that, following a period of acclimation of about 24 h, CAPB began to degrade and that primary degradation was complete within 120 h. Effective quantum yield (∆F/Fm′) and relative growth rates (RGRs) were the most sensitive measures of phytotoxicity, with CAPB concentrations at and above 10 mg l−1 eliciting irreversible, time-dependent and/or dose-dependent responses. Cell membrane damage, estimated from measurements of ion leakage, was detected only at a concentration of 40 mg l−1 after 48 h of exposure to CAPB but by 120 h damage was evident at all measured concentrations above 10 mg l−1. These observations suggest that both CAPB and its metabolites are intrinsically toxic to U. lactuca. The findings of this study are discussed in terms of the environmental consequences of applying CAPB to control harmful algal blooms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Brown MT, Newman JE (2003) Physiological responses of Gracilariopsis longissima (SG Gmelin) Steentoft, LM Irvine and Farnham (Rhodophyceae) to sub-lethal copper concentrations. Aquat Toxicol 364:201–213

    Article  Google Scholar 

  • Brunner C, Baumann U, Pletscher E, Eugster M (2000) Total degradation or environmental experiment. Tenside Surfact Det 37:276–280

    CAS  Google Scholar 

  • Cserháti T, Forgacs E, Oros G (2002) Biological activity and environmental impact of ionic surfactants. Environ Int 28:337–348

    Google Scholar 

  • Eichhorn P (2001) Surfactants and their aerobic degradation products: formation, analysis and occurrence in the aquatic environment. Dissertation, University of Mainz, p 195

  • Eichhorn P, Knepper TP (2001) Electrospray ionization mass spectrometric studies on the amphoteric surfactant cocamidopropylbetaine. J Mass Spectrom 36:677–684

    Article  CAS  Google Scholar 

  • Frömel T, Knepper TP (2008) Mass spectrometry as an indispensable tool for studies of biodegradation of surfactants. Trends Analyt Chem 27:1091–1106

    Article  Google Scholar 

  • Garcia MT, Campos E, Marsal A, Ribosa I (2008) Fate and effects of amphoteric surfactants in the aquatic environment. Environ Int 34:1001–1005

    Article  CAS  Google Scholar 

  • Garland JL, Levine LH, Yorio NC, Hummerick ME (2004) Response of graywater recycling systems based on hydroponic plant growth to three classes of surfactants. Water Res 38:1952–1962

    Article  CAS  Google Scholar 

  • Glover RE, Smith RR, Jones MV, Jackson SK, Rowlands CC (1999) An EPR investigation of surfactant action on bacterial membranes. FEMS Microbiol Lett 177:57–62

    Article  CAS  Google Scholar 

  • Gonzalez S, Barcelo D, Petrovic M (2007) Advanced liquid chromatography-mass spectrometry (LC-MS) methods applied to wastewater removal and the fate of surfactants in the environment. Trends Analyt Chem 26:116–124

    Article  CAS  Google Scholar 

  • Han Y-K, Brown MT, Park GS, Han T (2007) Evaluating aquatic toxicity by visual inspection of thallus color in the green macroalga Ulva: testing a novel bioassay. Environ Sci Technol 41:3667–3671

    Article  CAS  Google Scholar 

  • Koch U, Glatzle D, Ringenbach F, Dunz T, Stegerhartman T, Wagner E (1995) Measurement of ion leakage from plant-cells in response to aquatic pollutants. Bull Environ Contam Toxicol 54:606–613

    Article  CAS  Google Scholar 

  • Lewis MA (1990) Chronic toxicities of surfactants and detergent builders to algae: a review and risk assessment. Ecotoxicol Environ Safe 20:123–140

    Article  CAS  Google Scholar 

  • Li H, Miao J, Cui F, Li G (2008) Surfactant promotion of the inhibitory effects of cupric glutamate on the dinoflagellate Alexandrium. J Phycol 44:1364–1371

    Article  CAS  Google Scholar 

  • Madsen T, Boyd HB, Nylén D, Pedersen AR, Petersen GI, Simonsen P (2001) Environmental and health assessment of substances in household detergents and cosmetic detergent products. Environmental Project No 61, Miljǿprojekt, CETOX, pp 87–93

  • Masakorala K, Turner A, Brown MT (2010). Toxicity of synthetic surfactants to the marine macroalga, Ulva lactuca. Water Air Soil Pollut (in press)

  • Mayer LM, Schick LL, Self RFL, Jumars PA, Findlay RH, Chen Z, Sampson S (1997) Digestive environments of benthic macroinvertebrate guts: enzymes, surfactants and dissolved organic matter. J Mar Res 55:785–812

    Article  CAS  Google Scholar 

  • Pavlić Z, Vidaković-Cifrek Z, Puntarić D (2005) Toxicity of surfactants to green microalgae Pseudokirchneriella subcapitata and Scenedesmus subspicatus and marine diatoms Phaeodactylum tricornutum and Skeletonema costatum. Chemosphere 61:1061–1068

    Article  Google Scholar 

  • Popova A, Kemp R (2007) Effects of surfactants on the ultrastructural organization of the phytoplankton, Chlamydomonas reinhardtii and Anabaena cylindrica. Fundam Appl Limnol 169:131–136

    Article  CAS  Google Scholar 

  • Ralph PJ, Smith RA, Macinnis-Ng CMO, Seery CR (2007) Use of fluorescence-based ecotoxicological bioassays in monitoring toxicants and pollution in aquatic systems: review. Toxicol Environ Chem 89:589–607

    Article  CAS  Google Scholar 

  • Rosen M, Li F, Morrall SW, Versteeg DJ (2001) The relationship between the interfacial properties of surfactants and their toxicity to aquatic organisms. Environ Sci Technol 35:954–959

    Article  CAS  Google Scholar 

  • Sellner KG, Doucette GJ, Kirkpatrick GJ (2003) Harmful algal blooms: causes, impacts and detection. J Ind Microbiol Biotechnol 30:383–406

    Article  CAS  Google Scholar 

  • Sun X-X, Han K-N, Choi J-K, Kim E-K (2004) Screening of surfactants for harmful algal blooms mitigation. Mar Pollut Bull 48:937–945

    Article  CAS  Google Scholar 

  • Tarng JJ, Reich C (2006) Shampoos and conditioners. In: Lai K-Y (ed) Liquid detergents. Taylor and Francis, Boca Raton, pp 377–450

    Google Scholar 

  • Torres LG, Lemus X, Urquiza G, Verdejo A, Iturbe R (2005) Surfactant enhanced washing of drilling fluids, a promising remediation technique. Tenside Surfact Det 42:347–355

    CAS  Google Scholar 

  • Turner A, Pollock H, Brown MT (2009) Accumulation of Cu and Zn from antifouling paint particles by the marine macroalga, Ulva lactuca. Environ Pollut 157:2314–2319

    Article  CAS  Google Scholar 

  • Venhuis SH, Mehrvar M (2004) Health effects, environmental impacts and photochemical degradation of selected surfactants in water. Int J Photoenergy 6:115–125

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Lankem Ltd, Cheshire, United Kingdom for supplying the CAPB. Technical support by Nick Crocker and Peter Bond is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murray T. Brown.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vonlanthen, S., Brown, M.T. & Turner, A. Toxicity of the amphoteric surfactant, cocamidopropyl betaine, to the marine macroalga, Ulva lactuca . Ecotoxicology 20, 202–207 (2011). https://doi.org/10.1007/s10646-010-0571-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-010-0571-3

Keywords

Navigation