Skip to main content

Advertisement

Log in

Stable isotopes and trophic positions of littoral fishes from a Mediterranean marine protected area

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

Stable isotope analyses were employed to explore feeding and foraging habitats and trophic levels of littoral fishes in a western Mediterranean Marine Protected Area (Egadi Islands, Sicily, Italy). Carbon and nitrogen stable isotope ratios were measured in primary producers, invertebrates and fishes collected in December 2001 and January 2002. Fishes of the littoral region of the Egadi Islands had isotopic signatures that fell into a wider range for δ 13C (about 6‰) than for δ 15N (about 3‰). Carbon isotope ratios were consistent with a food web based on mixed sources and two trophic pathways leading to different fish species. Differences in the isotopic composition between islands were higher for benthivorous than for planktivorous fishes. The overall picture gained from this study is of a isotopic distinction between planktivorous and benthivorous fishes, resource partitioning facilitating the coexistence of similar species within the same ecosystem, and spatial variability in the isotopic signatures and trophic level of fishes. Asymmetrical analysis of variance showed that estimated trophic levels were lower in the area with the highest level of protection (Zone A) for only two out of the nine fishes analysed. As a consequence, overall spatial differences do not seem to be a consequence of protection, since in most cases trophic levels did not change significantly between zone A and zones C where professional fishing (trawling apart) is permitted, but of natural sources of variation (e.g. variability in food availability and site-specific food preferences of fishes). However, the results of this study suggest a different response at the species compared to the community level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46 doi:10.1046/j.1442-9993.2001.01070.x

    Article  Google Scholar 

  • Anderson MJ (2005) DistLM v.5: A FORTRAN computer program to calculate a distance-based multivariate analysis for a linear model. Department of Statistics, University of Auckland, New Zealand

    Google Scholar 

  • Arculeo M, Pipitone C, Riggio S (1989) Aspetti del regime alimentare di Mullus surmuletus L. (Pisces, Mullidae) nel Gofo di Palermo. Oebalia (Taranto) 15:67–77

    Google Scholar 

  • Arculeo M, Froglia C, Riggio S (1993) Food partitioning between Serranus scriba and Scorpaena porcus (Perciformes) on the infralittoral ground of the south Tyrrhenian Sea. Cybium 17:251–258

    Google Scholar 

  • Badalamenti F, D’Anna G, Fazio G, Gristina M, Lipari L (1993) Relazioni trofiche tra quattro specie ittiche catturate su differenti substrati nel Golfo di Castellammare (Sicilia N/O). Biol Mar Medit 1:145–150

    Google Scholar 

  • Bell JD, Harmelin-Vivien ML (1983) Fish fauna of French Mediterranean Posidonia oceanica seagrass meadows. 2. Feeding habits. Tethys 11:1–14

    Google Scholar 

  • Bode A, Carrera P, Lens S (2003) The pelagic foodweb in the upwelling ecosystem of Galicia (NW Spain) during spring: natural abundance of stable carbon and nitrogen isotopes. ICES J Mar Sci 60:11–22 doi:10.1006/jmsc.2002.1326

    Article  CAS  Google Scholar 

  • Chiappone M, Sluka R, Sealey KS (2000) Groupers (Pisces: Serranidae) in fished and protected areas of the Florida Keys, Bahamas and northern Caribbean. Mar Ecol Prog Ser 198:261–272 doi:10.3354/meps198261

    Article  Google Scholar 

  • Clarke KR, Warwick RM (1994) Change in marine communities: an approach to statistical analysis and interpretation. Plymouth Marine Laboratory, Plymouth

    Google Scholar 

  • Connolly RM, Gorman D, Guest MA (2005) Movement of carbon among estuarine habitats and its assimilation by invertebrates. Oecologia 144:684–691 doi:10.1007/s00442-005-0167-4

    Article  PubMed  Google Scholar 

  • Dahl TM, Falk-Petersen S, Gabrielsen GW, Sargent JR, Hop H, Millar RM (2003) Lipids and stable isotopes in common eider, black-legged kittiwake and northern fulmar: a trophic study from an Arctic fjord. Mar Ecol Prog Ser 256:257–269 doi:10.3354/meps256257

    Article  CAS  Google Scholar 

  • Dayton PK, Tegner MJ, Edwards PB, Riser KL (1998) Sliding baselines, ghosts, and reduced expectations in kelp forest communities. Ecol Appl 8:309–322 doi:10.1890/1051-0761(1998)008[0309:SBGARE]2.0.CO;2

    Article  Google Scholar 

  • Dayton PK, Sala E, Tegner MJ, Thrush SF (2000) Marine protected areas: parks, baselines, and fishery enhancement. Bull Mar Sci 66:617–634

    Google Scholar 

  • De Pirro M, Marchetti GM, Chelazzi G (1999) Foraging interactions among three benthic fish in a Posidonia oceanica reef lagoon along the Tyrrhenian coast. J Fish Biol 54:1300–1309 doi:10.1006/jfbi.1999.0958

    Article  Google Scholar 

  • Deudero S, Pinnegar JK, Polunin NVC, Morey G, Morales-Nin B (2004) Spatial variation and ontogenic shifts in the isotopic composition of Mediterranean littoral fishes. Mar Biol (Berl) 145:971–981 doi:10.1007/s00227-004-1374-y

    Article  CAS  Google Scholar 

  • Dittel AI, Epifanio CE, Schwalm SM, Fantle MS, Fogel ML (2000) Carbon and nitrogen sources for juvenile blue crabs Callinectes sapidus in coastal wetlands. Mar Ecol Prog Ser 194:103–112 doi:10.3354/meps194103

    Article  Google Scholar 

  • Francour P (1994) Pluriannual analysis of the reserve effect on ichthyofauna in the Scandola natural reserve (Corsica, North-western Mediterranean). Oceanol Acta 17:309–317

    Google Scholar 

  • Fraschetti S, Terlizzi A, Micheli F, Benedetti-Cecchi L, Boero F (2002) Marine protected areas in the Mediterranean Sea: objectives, effectiveness and monitoring. Mar Ecol (Berl) 23:190–200 doi:10.1111/j.1439-0485.2002.tb00018.x

    Article  Google Scholar 

  • Gannes LZ, O’Brien DM, Martinez Del Rio C (1997) Stable isotopes in animal ecology: assumptions, caveats, and a call for more laboratory experiments. Ecology 78:1271–1276

    Google Scholar 

  • García-Charton JA, Pérez-Ruzafa A (1999) Ecological heterogeneity and the evaluation of the effects of marine reserves. Fish Res 42:1–20 doi:10.1016/S0165-7836(99)00043-0

    Article  Google Scholar 

  • García-Charton JA, Pérez-Ruzafa Á, Sánchez-Jerez P, Bayle-Sempere JT, Reňones O, Moreno D (2004) Multi-scale spatial heterogeneity, habitat structure, and the effect of marine reserves on Western Mediterranean rocky reef fish assemblages. Mar Biol (Berl) 144:161–182 doi:10.1007/s00227-003-1170-0

    Article  Google Scholar 

  • Glasby TM (1997) Analysing data from post-impact studies using asymmetrical analyses of variance: a case study of epibiota on marinas. Aust J Ecol 22:448–459 doi:10.1111/j.1442-9993.1997.tb00696.x

    Article  Google Scholar 

  • Halpern BJ (2003) The impact of marine reserves: do reserves work and does reserve size matter. Ecol Appl 13:S117–S137 doi:10.1890/1051-0761(2003)013[0117:TIOMRD]2.0.CO;2

    Article  Google Scholar 

  • Harmelin JG, Bachet F, Garcia F (1995) Mediterranean marine reserves: fish indices as tests for protection efficiency. Mar Ecol (Berl) 16:233–250 doi:10.1111/j.1439-0485.1995.tb00408.x

    Article  Google Scholar 

  • Hobson KA, Ambrose WG, Renaud PE (1995) Sources of primary production, benthic–pelagic coupling, and trophic relationships within the Northeast Water Polynya: insights from δ13C and δ15N analysis. Mar Ecol Prog Ser 128:1–10 doi:10.3354/meps128001

    Article  Google Scholar 

  • Iken K, Bluhm BA, Gradinger R (2005) Food web structure in the high Arctic Canada Basin: evidence from δ13C and δ15N analysis. Polar Biol 28:238–249 doi:10.1007/s00300-004-0669-2

    Article  Google Scholar 

  • Jennings S, Kaiser MJ (1998) The effects of fishing on marine ecosystems. Adv Mar Biol 34:201–352 doi:10.1016/S0065-2881(08)60212-6

    Article  Google Scholar 

  • Jennings S, Reňones O, Morales-Nin B, Polunin NVC, Moranta J, Coll J (1997) Spatial variation in the 15N and 13C stable isotope composition of plants, invertebrates and fishes on Mediterranean reefs: implications for the study of trophic pathways. Mar Ecol Prog Ser 146:109–116 doi:10.3354/meps146109

    Article  Google Scholar 

  • Khoury C (1984) Ethologies alimentaires de quelques espèces de poisons de l’herbier de Posidonies du Parc National de Port-Cros. In: Boudouresque CF, Jeudy de Grissac A, Olivier J (eds) International workshop Posidonia oceanica beds, vol 1. GIS Posidonie, France, pp 335–347

    Google Scholar 

  • Labropoulou M, Eleftheriou A (1997) The foraging ecology of two pairs of congeneric demersal fish species: importance of morphological characteristics in prey selection. J Fish Biol 50:324–340 doi:10.1111/j.1095-8649.1997.tb01361.x

    Article  Google Scholar 

  • Labropoulou M, Machias A, Tsimenides N, Eleftheriou A (1997) Feeding habits and ontogenetic shift of the striped red mullet, Mullus surmuletus Linnaeus, 1758. Fish Res 31:257–267 doi:10.1016/S0165-7836(97)00017-9

    Article  Google Scholar 

  • Lepoint G, Nyssen F, Gobert S, Dauby P, Bouquegneau JM (2000) Relative impact of a seagrass bed and its adjacent epilithic algal community in consumer diets. Mar Biol (Berl) 136:513–518 doi:10.1007/s002270050711

    Article  CAS  Google Scholar 

  • Lubchenco J, Palumbi SR, Gaines SD, Andelman S (2003) Plugging a hole in the ocean: the emerging science of marine reserves. Ecol Appl 13:S3–S7 doi:10.1890/1051-0761(2003)013[0003:PAHITO]2.0.CO;2

    Article  Google Scholar 

  • McCutchan JH Jr, Lewis WM Jr, Kendall C, McGrath CC (2003) Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulphur. Oikos 102:378–390 doi:10.1034/j.1600-0706.2003.12098.x

    Article  CAS  Google Scholar 

  • Moncreiff CA, Sullivan MJ (2001) Trophic importance of epiphytic algae in subtropical seagrass beds: evidence from multiple stable isotope analysis. Mar Ecol Prog Ser 215:93–106 doi:10.3354/meps215093

    Article  CAS  Google Scholar 

  • Olive PJW, Pinnegar JK, Polunin NVC, Richards G, Welch R (2003) Isotope trophic-step fractionation: a dynamic equilibrium model. J Anim Ecol 72:608–617 doi:10.1046/j.1365-2656.2003.00730.x

    Article  Google Scholar 

  • Owens NJP (1987) Natural variation in 15N in the marine environment. Adv Mar Biol 24:389–451

    Article  Google Scholar 

  • Pauly D, Christensen V, Dalsgaard J, Froese R, Torres F (1998) Fishing down marine food webs. Science 279:860–863 doi:10.1126/science.279.5352.860

    Article  PubMed  CAS  Google Scholar 

  • Pauly D, Palomares MA, Froese R, Sa-a P, Vakily M, Preikshot D et al (2001) Fishing down Canadian aquatic food webs. Can J Fish Aquat Sci 58:51–62 doi:10.1139/cjfas-58-1-51

    Article  Google Scholar 

  • Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Annu Rev Ecol Syst 18:293–320 doi:10.1146/annurev.es.18.110187.001453

    Article  Google Scholar 

  • Pinnegar JK, Polunin NVC (2000) Contributions of stable-isotope data to elucidating food webs of Mediterranean rocky littoral fishes. Oecologia 122:399–409 doi:10.1007/s004420050046

    Article  Google Scholar 

  • Pinnegar JK, Polunin NVC, Francour P, Badalamenti F, Chemello R, Harmelin-Vivien ML et al (2000) Trophic cascades in benthic marine ecosystems: lessons for fisheries and protected-area management. Environ Conserv 27:179–200 doi:10.1017/S0376892900000205

    Article  Google Scholar 

  • Pinnegar JK, Jennings S, O’Brien CM, Polunin NCV (2002) Long-term changes in the trophic level of the Celtic Sea fish community and fish market price distribution. J Appl Ecol 39:377–390 doi:10.1046/j.1365-2664.2002.00723.x

    Article  Google Scholar 

  • Post DM (2002) Using stable isotopes to estimate trophic position: models, methods and assumptions. Ecology 83:703–718

    Article  Google Scholar 

  • Russ GR (2002) Yet another review of marine reserves as reef fisheries management tools. In: Sale PF (ed) Coral reef fishes: dynamics and diversity in a complex ecosystem. Academic, San Diego

    Google Scholar 

  • Russ GR, Stockwell B, Alcala AC (2005) Inferring versus measuring rates of recovery in no-take marine reserves. Mar Ecol Prog Ser 292:1–12 doi:10.3354/meps292001

    Article  Google Scholar 

  • Sala E, Boudouresque CF, Harmelin-Vivien M (1998) Fishing, trophic cascades, and the structure of algal assemblages: evaluation of an old but untested paradigm. Oikos 82:425–439 doi:10.2307/3546364

    Article  Google Scholar 

  • Shears NT, Babcock RC (2003) Continuing trophic cascade effects after 25 years of no-take marine reserve protection. Mar Ecol Prog Ser 246:1–16 doi:10.3354/meps246001

    Article  Google Scholar 

  • Steneck RS (1998) Human influences on coastal ecosystems: does overfishing create trophic cascades. Trends Ecol Evol 13:429–430 doi:10.1016/S0169-5347(98)01494-3

    Article  Google Scholar 

  • Stergiou KI, Karpouzi VS (2002) Feeding habits and trophic levels of Mediterranean fish. Rev Fish Biol Fish 11:217–254 doi:10.1023/A:1020556722822

    Article  Google Scholar 

  • Tamelander T, Renaud PE, Hop H, Carroll ML, Ambrose WG Jr, Hobson KA (2006) Trophic relationships and pelagic–benthic coupling during summer in the Barents Sea Marginal Ice Zone, revealed by stable carbon and nitrogen isotope measurements. Mar Ecol Prog Ser 310:33–46 doi:10.3354/meps310033

    Article  CAS  Google Scholar 

  • Tegner MJ, Dayton PK (2000) Ecosystem effects of fishing in kelp forest communities. ICES J Mar Sci 57:579–589 doi:10.1006/jmsc.2000.0715

    Article  Google Scholar 

  • Underwood AJ (1993) The mechanisms of spatially replicated sampling programmes to detect environmental impacts in a variable world. Aust J Ecol 18:99–116 doi:10.1111/j.1442-9993.1993.tb00437.x

    Article  Google Scholar 

  • Vanderklift MA, Ponsard S (2003) Sources of variation in consumer-diet δ15N enrichment: a meta-analysis. Oecologia 136:169–182 doi:10.1007/s00442-003-1270-z

    Article  PubMed  Google Scholar 

  • Warwick RM, Clarke KR (1993) Increased variability as a symptom of stress in marine communities. J Exp Mar Biol Ecol 172:215–226 doi:10.1016/0022-0981(93)90098-9

    Article  Google Scholar 

  • Willis TJ, Millar RB, Babcock RC (2000) Detection of spatial variability in relative density of fishes: comparison of visual census, angling, and baited underwater video. Mar Ecol Prog Ser 198:249–260 doi:10.3354/meps198249

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank A. Savona and M. Caruso for assistance with sampling and F. Colombo and L. Camarda for laboratory assistance. This research was funded by Ministero delle Politiche Agricole e Forestali (MiPAF), Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR) and Ministero dell’Ambiente e della Tutela del Territorio (MATT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatrice Vizzini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vizzini, S., Mazzola, A. Stable isotopes and trophic positions of littoral fishes from a Mediterranean marine protected area. Environ Biol Fish 84, 13–25 (2009). https://doi.org/10.1007/s10641-008-9381-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10641-008-9381-3

Keywords

Navigation