Skip to main content

Advertisement

Log in

MicroRNA Expression Differentiates Squamous Epithelium from Barrett’s Esophagus and Esophageal Cancer

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Current strategies fail to identify most patients with esophageal adenocarcinoma (EAC) before the disease becomes advanced and incurable. Given the dismal prognosis associated with EAC, improvements in detection of early-stage esophageal neoplasia are needed.

Aim

We sought to assess whether differential expression of microRNAs could discriminate between squamous epithelium, Barrett’s esophagus (BE), and EAC.

Methods

We analyzed microRNA expression in a discovery cohort of human endoscopic biopsy samples from 36 patients representing normal squamous esophagus (n = 11), BE (n = 14), and high-grade dysplasia/EAC (n = 11). RNA was assessed using microarrays representing 847 human microRNAs followed by quantitative real-time polymerase chain reaction (qRT-PCR) verification of nine microRNAs. In a second cohort (n = 18), qRT-PCR validation of five miRNAs was performed. Expression of 59 microRNAs associated with BE/EAC in the literature was assessed in our training cohort. Known esophageal cell lines were used to compare miRNA expression to tissue miRNAs.

Results

After controlling for multiple comparisons, we found 34 miRNAs differentially expressed between squamous esophagus and BE/EAC by microarray analysis. However, miRNA expression did not reliably differentiate non-dysplastic BE from EAC. In the validation cohort, all five microRNAs selected for qRT-PCR validation differentiated between squamous samples and BE/EAC. Microarray results supported 14 of the previously reported microRNAs associated with BE/EAC in the literature. Cell lines did not generally reflect miRNA expression found in vivo.

Conclusions

These data indicate that miRNAs differ between squamous esophageal epithelium and BE/EAC, but do not distinguish between BE and EAC. We suggest prospective evaluation of miRNAs in patients at high risk for EAC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dulai GS, Guha S, Kahn KL, Gornbein J, Weinstein WM. Preoperative prevalence of Barrett’s esophagus in esophageal adenocarcinoma: a systematic review. Gastroenterology. 2002;122:26–33.

    Article  PubMed  Google Scholar 

  2. Hvid-Jensen F, Pedersen L, Drewes AM, Sorensen HT, Funch-Jensen P. Incidence of adenocarcinoma among patients with Barrett’s esophagus. N Engl J Med. 2011;365:1375–1383.

    Article  PubMed  CAS  Google Scholar 

  3. Spechler SJ, Sharma P, Souza RF, Inadomi JM, Shaheen NJ. American Gastroenterological Association medical position statement on the management of Barrett’s esophagus. Gastroenterology. 2011;140:1084–1091.

    Article  PubMed  Google Scholar 

  4. National Cancer Institute. SEER Cancer Statistics Review, 2011. Available at: http://seer.cancer.gov/csr/1975_2008/; 2012. Accessed 14 March 2012.

  5. Rubenstein JH, Mattek N, Eisen G. Age- and sex-specific yield of Barrett’s esophagus by endoscopy indication. Gastrointest Endosc. 2010;71:21–27.

    Article  PubMed  Google Scholar 

  6. Shaheen NJ, Crosby MA, Bozymski EM, Sandler RS. Is there publication bias in the reporting of cancer risk in Barrett’s esophagus? Gastroenterology. 2000;119:333–338.

    Article  PubMed  CAS  Google Scholar 

  7. Ben-Menachem T, Decker GA, Early DS, et al. Adverse events of upper GI endoscopy. Gastrointest Endosc. 2012;76:707–718.

    Article  PubMed  Google Scholar 

  8. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120:15–20.

    Article  PubMed  CAS  Google Scholar 

  9. Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435:834–838.

    Article  PubMed  CAS  Google Scholar 

  10. Croce CM. miRNAs in the spotlight: understanding cancer gene dependency. Nat Med. 2011;17:935–936.

    Article  PubMed  CAS  Google Scholar 

  11. Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 2002;99:15524–15529.

    Article  PubMed  CAS  Google Scholar 

  12. Krichevsky AM, Gabriely G. miR-21: a small multi-faceted RNA. J Cell Mol Med. 2009;13:39–53.

    Article  PubMed  CAS  Google Scholar 

  13. Volinia S, Calin GA, Liu CG, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA. 2006;103:2257–2261.

    Article  PubMed  CAS  Google Scholar 

  14. Spechler SJ, Sharma P, Souza RF, Inadomi JM, Shaheen NJ. American Gastroenterological Association technical review on the management of Barrett’s esophagus. Gastroenterology. 2011;140:e18–e52. (quiz e13).

    Article  PubMed  Google Scholar 

  15. Opitz L, Salinas-Riester G, Grade M, et al. Impact of RNA degradation on gene expression profiling. BMC Med Genomics. 2010;3:36.

    Article  PubMed  Google Scholar 

  16. R_Core_Team. R: A Language and Environment for Statistical Computing. New York: R Foundation for Statistical Computing; 2012.

    Google Scholar 

  17. Gentleman RC, Carey VJ, Bates DM, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004;5:R80.

    Article  PubMed  Google Scholar 

  18. Gautier L, Cope L, Bolstad BM, Irizarry RA. affy–analysis of Affymetrix GeneChip data at the probe level. Bioinformatics. 2004;20:307–315.

    Article  PubMed  CAS  Google Scholar 

  19. Koshiol J, Wang E, Zhao Y, Marincola F, Landi MT. Strengths and limitations of laboratory procedures for microRNA detection. Cancer Epidemiol Biomarkers Prev. 2010;19:907–911.

    Article  PubMed  CAS  Google Scholar 

  20. Irizarry RA, Hobbs B, Collin F, et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003;4:249–264.

    Article  PubMed  Google Scholar 

  21. Chen DT, Hernandez JM, Shibata D, et al. Complementary strand microRNAs mediate acquisition of metastatic potential in colonic adenocarcinoma. J Gastrointest Surg. 2012;16:905–912. (discussion 912–913).

    Article  PubMed  Google Scholar 

  22. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006;34:D140–D144.

    Article  PubMed  CAS  Google Scholar 

  23. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ. miRBase: tools for microRNA genomics. Nucleic Acids Res. 2008;36:D154–D158.

    Article  PubMed  CAS  Google Scholar 

  24. Kendall M. A new measure of rank correlation. Biometrika. 1938;30:81–89.

    Google Scholar 

  25. Feber A, Xi L, Luketich JD, et al. MicroRNA expression profiles of esophageal cancer. J Thorac Cardiovasc Surg. 2008;135:255–260. (discussion 260).

    Article  PubMed  CAS  Google Scholar 

  26. Yang H, Gu J, Wang KK, et al. MicroRNA expression signatures in Barrett’s esophagus and esophageal adenocarcinoma. Clin Cancer Res. 2009;15:5744–5752.

    Article  PubMed  CAS  Google Scholar 

  27. Bansal A, Lee IH, Hong X, et al. Feasibility of MicroRNAs as biomarkers for Barrett’s esophagus progression: a pilot cross-sectional, phase 2 biomarker study. Am J Gastroenterol. 2011;106:1055–1063.

    Article  PubMed  CAS  Google Scholar 

  28. Leidner RS, Ravi L, Leahy P, et al. The microRNAs, MiR-31 and MiR-375, as candidate markers in Barrett’s esophageal carcinogenesis. Genes Chromosomes Cancer. 2012;51:473–479.

    Article  PubMed  CAS  Google Scholar 

  29. Fassan M, Volinia S, Palatini J, et al. MicroRNA expression profiling in human Barrett’s carcinogenesis. Int J Cancer. 2011;129:1661–1670.

    Google Scholar 

  30. Mathe EA, Nguyen GH, Bowman ED, et al. MicroRNA expression in squamous cell carcinoma and adenocarcinoma of the esophagus: associations with survival. Clin Cancer Res. 2009;15:6192–6200.

    Article  PubMed  CAS  Google Scholar 

  31. Wijnhoven BP, Hussey DJ, Watson DI, Tsykin A, Smith CM, Michael MZ. MicroRNA profiling of Barrett’s oesophagus and oesophageal adenocarcinoma. Br J Surg. 2010;97:853–861.

    Article  PubMed  CAS  Google Scholar 

  32. Huo X, Zhang HY, Zhang XI, et al. Acid and bile salt-induced CDX2 expression differs in esophageal squamous cells from patients with and without Barrett’s esophagus. Gastroenterology. 2010;139(194–203):e191.

    Google Scholar 

  33. Zhang HY, Zhang X, Chen X, et al. Differences in activity and phosphorylation of MAPK enzymes in esophageal squamous cells of GERD patients with and without Barrett’s esophagus. Am J Physiol Gastrointest Liver Physiol. 2008;295:G470–G478.

    Article  PubMed  CAS  Google Scholar 

  34. Jaiswal KR, Morales CP, Feagins LA, et al. Characterization of telomerase-immortalized, non-neoplastic, human Barrett’s cell line (BAR-T). Dis Esophagus. 2007;20:256–264.

    Article  PubMed  CAS  Google Scholar 

  35. Hormi-Carver K, Zhang X, Zhang HY, et al. Unlike esophageal squamous cells, Barrett’s epithelial cells resist apoptosis by activating the nuclear factor-kappaB pathway. Cancer Res. 2009;69:672–677.

    Article  PubMed  CAS  Google Scholar 

  36. Jonckheere A. A distribution-free k-sample test again ordered alternatives. Biometrika. 1954;41:133–145.

    Google Scholar 

  37. Terpstra T. The asymptotic normality and consistency of Kendall’s test against trend, when ties are present in one ranking. Indag Math. 1952;14:327–333.

    Google Scholar 

  38. Clinfun: Clinical Trial Design and Data Analysis Functions. R Package version 1.0.3. Available at: http://CRAN.R-project.org/package=clinfun; 2012. Accessed 08 November 2012.

  39. Sarkar D. Lattice: Multivariate Data Visualization with R. New York: Springer; 2008.

    Google Scholar 

  40. Wu X, Ajani JA, Gu J, et al. MicroRNA expression signatures during malignant progression from Barrett’s esophagus to esophageal adenocarcinoma. Cancer Prev Res (Phila). 2013;6:196–205.

    Article  CAS  Google Scholar 

  41. McKenna LB, Schug J, Vourekas A, et al. MicroRNAs control intestinal epithelial differentiation, architecture, and barrier function. Gastroenterology. 2010;139:1654–1664.

    Google Scholar 

  42. van Baal JW, Verbeek RE, Bus P, et al. microRNA-145 in Barrett’s oesophagus: regulating BMP4 signalling via GATA6. Gut. 2010;62:664–675.

    Article  Google Scholar 

  43. Kadri SR, Lao-Sirieix P, O’Donovan M, et al. Acceptability and accuracy of a non-endoscopic screening test for Barrett’s oesophagus in primary care: cohort study. BMJ. 2010;341:c4372.

    Article  PubMed  Google Scholar 

  44. Montgomery E, Bronner MP, Goldblum JR. Reproducibility of the diagnosis of dysplasia in Barrett esophagus: a reaffirmation. Hum Pathol. 2001;32:368–378.

    Article  PubMed  CAS  Google Scholar 

  45. Ozsolak F, Milos PM. RNA sequencing: advances, challenges and opportunities. Nat Rev Genet. 2011;12:87–98.

    Article  PubMed  CAS  Google Scholar 

  46. Lu Z, Liu M, Stribinskis V, et al. MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene. 2008;27:4373–4379.

    Article  PubMed  CAS  Google Scholar 

  47. Fassan M, Pizzi M, Battaglia G, et al. Programmed cell death 4 (PDCD4) expression during multistep Barrett’s carcinogenesis. J Clin Pathol. 2010;63:692–696.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by an American College of Gastroenterology Junior Faculty Development Award (KG) and by the Emeline Brown Cancer Genomics Research Fund (KG). Support was also from the National Cancer Institute U54CA163060 (NS).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine S. Garman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 78 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garman, K.S., Owzar, K., Hauser, E.R. et al. MicroRNA Expression Differentiates Squamous Epithelium from Barrett’s Esophagus and Esophageal Cancer. Dig Dis Sci 58, 3178–3188 (2013). https://doi.org/10.1007/s10620-013-2806-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-013-2806-7

Keywords

Navigation