Skip to main content

Advertisement

Log in

Relationship Between Low-Dose Aspirin-Induced Gastric Mucosal Injury and Intragastric pH in Healthy Volunteers

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background and Aims

Gastric acid plays an important role in the pathogenesis of gastric mucosal lesions. We investigated whether aspirin-induced gastric mucosal injury might have any association with the intragastric pH.

Materials and Methods

Fifteen healthy, Helicobacter pylori-negative volunteers randomly underwent the four different 7-day regimens: (1) aspirin 100 mg, (2) rabeprazole 10 mg, (3) aspirin 100 mg + rabeprazole 10 mg, and (4) aspirin 100 mg + rabeprazole 40 mg. Gastric mucosal injury based on the modified Lanza score (MLS), 24-h intragastric pH, and histopathology of gastric mucosa were evaluated prior to the start and on day 7 of each regimen.

Results

The median MLSs were 0 in the baseline and the rabeprazole 10 mg regimen. The median MLS in the aspirin regimen was 3, while those in both aspirin + rabeprazole 10 mg and aspirin + rabeprazole 40 mg regimens were 0. Rabeprazole significantly prevented the gastric mucosal injury by aspirin (P = 0.001 for rabeprazole 10 mg and P = 0.005 for rabeprazole 40 mg). The MLSs were negatively correlated with the 24-h intragastric pH (P = −0.711, < 0.001), whereas aspirin had no effect on the intragastric pH. Aspirin expanded the mean diameter of the microvessels of the gastric mucosa, which, in turn, was negatively correlated with the intragastric pH.

Conclusions

Aspirin might induce gastric mucosal injury by affecting the mucosal microvessels in an acid-dependent manner. Sustained maintenance of the intragastric pH at an elevated value is necessary to prevent gastric mucosal damage induced by aspirin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

COX:

Cyclooxygenase

CYP2C19:

Cytochrome P450 2C19

H. pylori :

Helicobacter pylori

IM:

Intermediate metabolizer

MLS:

Modified Lanza score

NSAID:

Non-steroidal anti-inflammatory drug

PG:

Prostaglandin

PM:

Poor metabolizer

RM:

Rapid metabolizer

References

  1. Nishikawa K, Sugiyama T, Kato M, et al. Non-Helicobacter pylori and non-NSAID peptic ulcer disease in the Japanese population. Eur J Gastroenterol Hepatol. 2000;12(6):635–640.

    Article  CAS  PubMed  Google Scholar 

  2. Awtry EH, Loscalzo J. Aspirin. Circulation. 2000;101(10):1206–1218.

    CAS  PubMed  Google Scholar 

  3. Taha AS, Angerson WJ, Knill-Jones RP, Blatchford O. Upper gastrointestinal haemorrhage associated with low-dose aspirin and anti-thrombotic drugs - a 6-year analysis and comparison with non-steroidal anti-inflammatory drugs. Aliment Pharmacol Ther. 2005;22(4):285–289.

    Article  CAS  PubMed  Google Scholar 

  4. Collaborative overview of randomised trials of antiplatelet therapy–I: Prevention of death, myocardial infarction, and stroke by prolonged antiplatelet therapy in various categories of patients. Antiplatelet Trialists’ Collaboration. Bmj. 1994;308(6921):81-106.

    Google Scholar 

  5. Schoen RT, Vender RJ. Mechanisms of nonsteroidal anti-inflammatory drug-induced gastric damage. Am J Med. 1989;86(4):449–458.

    Article  CAS  PubMed  Google Scholar 

  6. Halter F. Mechanism of gastrointestinal toxicity of NSAIDs. Scand J Rheumatol Suppl. 1988;73:16–21.

    Article  CAS  PubMed  Google Scholar 

  7. Yeomans ND, Lanas AI, Talley NJ, et al. Prevalence and incidence of gastroduodenal ulcers during treatment with vascular protective doses of aspirin. Aliment Pharmacol Ther. 2005;22(9):795–801.

    Article  CAS  PubMed  Google Scholar 

  8. Derry S, Loke YK. Risk of gastrointestinal haemorrhage with long term use of aspirin: meta-analysis. BMJ. 2000;321(7270):1183–1187.

    Article  CAS  PubMed  Google Scholar 

  9. Pilotto A, Franceschi M, Leandro G, et al. Proton-pump inhibitors reduce the risk of uncomplicated peptic ulcer in elderly either acute or chronic users of aspirin/non-steroidal anti-inflammatory drugs. Aliment Pharmacol Ther. 2004;20(10):1091–1097.

    Article  CAS  PubMed  Google Scholar 

  10. Serrano P, Lanas A, Arroyo MT, Ferreira IJ. Risk of upper gastrointestinal bleeding in patients taking low-dose aspirin for the prevention of cardiovascular diseases. Aliment Pharmacol Ther. 2002;16(11):1945–1953.

    Article  CAS  PubMed  Google Scholar 

  11. Furuta T, Shirai N, Sugimoto M, Ohashi K, Ishizaki T. Pharmacogenomics of proton pump inhibitors. Pharmacogenomics. 2004;5(2):181–202.

    Article  CAS  PubMed  Google Scholar 

  12. Furuta T, Shirai N, Takashima M, et al. Effect of genotypic differences in CYP2C19 on cure rates for Helicobacter pylori infection by triple therapy with a proton pump inhibitor, amoxicillin, and clarithromycin. Clin Pharmacol Ther. 2001;69(3):158–168.

    Article  CAS  PubMed  Google Scholar 

  13. Ishizaki T, Horai Y. Review article: cytochrome P450 and the metabolism of proton pump inhibitors—emphasis on rabeprazole. Aliment Pharmacol Ther. 1999;13(Suppl 3):27–36.

    Article  CAS  PubMed  Google Scholar 

  14. Yasuda S, Horai Y, Tomono Y, et al. Comparison of the kinetic disposition and metabolism of E3810, a new proton pump inhibitor, and omeprazole in relation to S-mephenytoin 4′-hydroxylation status. Clin Pharmacol Ther. 1995;58(2):143–154.

    Article  CAS  PubMed  Google Scholar 

  15. Adachi K, Katsube T, Kawamura A, et al. CYP2C19 genotype status and intragastric pH during dosing with lansoprazole or rabeprazole. Aliment Pharmacol Ther. 2000;14(10):1259–1266.

    Article  CAS  PubMed  Google Scholar 

  16. Shirai N, Furuta T, Moriyama Y, et al. Effects of CYP2C19 genotypic differences in the metabolism of omeprazole and rabeprazole on intragastric pH. Aliment Pharmacol Ther. 2001;15(12):1929–1937.

    Article  CAS  PubMed  Google Scholar 

  17. Ieiri I, Kishimoto Y, Okochi H, et al. Comparison of the kinetic disposition of and serum gastrin change by lansoprazole versus rabeprazole during an 8-day dosing scheme in relation to CYP2C19 polymorphism. Eur J Clin Pharmacol. 2001;57(6–7):485–492.

    CAS  PubMed  Google Scholar 

  18. Horai Y, Kimura M, Furuie H, et al. Pharmacodynamic effects and kinetic disposition of rabeprazole in relation to CYP2C19 genotypes. Aliment Pharmacol Ther. 2001;15(6):793–803.

    Article  CAS  PubMed  Google Scholar 

  19. Lanza FL, Royer GL Jr, Nelson RS, Chen TT, Seckman CE, Rack MF. A comparative endoscopic evaluation of the damaging effects of nonsteroidal anti-inflammatory agents on the gastric and duodenal mucosa. Am J Gastroenterol. 1981;75(1):17–21.

    CAS  PubMed  Google Scholar 

  20. Naito Y, Yoshikawa T, Iinuma S, et al. Rebamipide protects against indomethacin-induced gastric mucosal injury in healthy volunteers in a double-blind, placebo-controlled study. Dig Dis Sci. 1998;43(9 Suppl):83S–89S.

    CAS  PubMed  Google Scholar 

  21. Dixon MF, Genta RM, Yardley JH, Correa P. Classification, grading of gastritis. The updated Sydney System. International workshop on the histopathology of gastritis Houston, 1994. Am J Surg Pathol. 1996;20(10):1161–1181.

    Article  CAS  PubMed  Google Scholar 

  22. Svedlund J, Sjodin I, Dotevall G. GSRS—a clinical rating scale for gastrointestinal symptoms in patients with irritable bowel syndrome and peptic ulcer disease. Dig Dis Sci. 1988;33(2):129–134.

    Article  CAS  PubMed  Google Scholar 

  23. Funatsu T, Chono K, Hirata T, Keto Y, Kimoto A, Sasamata M. Mucosal acid causes gastric mucosal microcirculatory disturbance in nonsteroidal anti-inflammatory drug-treated rats. Eur J Pharmacol. 2007;554(1):53–59.

    Article  CAS  PubMed  Google Scholar 

  24. Elliott SL, Ferris RJ, Giraud AS, Cook GA, Skeljo MV, Yeomans ND. Indomethacin damage to rat gastric mucosa is markedly dependent on luminal pH. Clin Exp Pharmacol Physiol. 1996;23(5):432–434.

    Article  CAS  PubMed  Google Scholar 

  25. Kitchingman GK, Prichard PJ, Daneshmend TK, Walt RP, Hawkey CJ. Enhanced gastric mucosal bleeding with doses of aspirin used for prophylaxis and its reduction by ranitidine. Br J Clin Pharmacol. 1989;28(5):581–585.

    CAS  PubMed  Google Scholar 

  26. Savarino V, Mela GS, Zentilin P, et al. Effect of one-month treatment with nonsteroidal antiinflammatory drugs (NSAIDs) on gastric pH of rheumatoid arthritis patients. Dig Dis Sci. 1998;43(3):459–463.

    Article  CAS  PubMed  Google Scholar 

  27. Janssen M, Baak LC, Jansen JB, Dijkmans BA, Vandenbroucke JP, Lamers CB. Effects of indomethacin on intragastric pH and meal-stimulated serum gastrin secretion in rheumatoid arthritis patients. Aliment Pharmacol Ther. 1993;7(4):393–400.

    Article  CAS  PubMed  Google Scholar 

  28. Odashima M, Otaka M, Jin M, et al. Attenuation of gastric mucosal inflammation induced by aspirin through activation of A2A adenosine receptor in rats. World J Gastroenterol. 2006;12(4):568–573.

    CAS  PubMed  Google Scholar 

  29. Wallace JL, Zamuner SR, McKnight W, et al. Aspirin, but not NO-releasing aspirin (NCX-4016), interacts with selective COX-2 inhibitors to aggravate gastric damage and inflammation. Am J Physiol Gastrointest Liver Physiol. 2004;286(1):G76–G81.

    Article  CAS  PubMed  Google Scholar 

  30. Yao T, Kato M, Asaka M. Pathology of gastric mucosal injury induced by low-dose aspirin. Gi Forefr. 2007;3(1):32–36. Japanese.

    Google Scholar 

  31. Kitahora T, Guth PH. Effect of aspirin plus hydrochloric acid on the gastric mucosal microcirculation. Gastroenterology. 1987;93(4):810–817.

    CAS  PubMed  Google Scholar 

  32. Shimatani T, Inoue M, Kuroiwa T, et al. Acid-suppressive efficacy of a reduced dosage of rabeprazole: comparison of 10 mg twice daily rabeprazole with 20 mg twice daily rabeprazole, 30 mg twice daily lansoprazole, and 20 mg twice daily omeprazole by 24-hr intragastric pH-metry. Dig Dis Sci. 2005;50(7):1202–1206.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a Grant-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan (20590718) and (20014007) and grants from Ministry of Health, Labour and Welfare (19-19). The abstract of the study was presented at the Annual Meeting of the American Gastroenterological Association held in San Diego, CA, USA, in May 2008. We greatly appreciate the help of our endoscopy room staff, Ms. Chieko Matsumoto, Ms Kinuko Maruyama, Ms Satoko Takebayashi, Ms Keiko Kikuchi and Ms Hitomi Tanaka.

Conflict of Interest Statement

None of the authors have any conflicts of interest related to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahisa Furuta.

Additional information

Study highlights: we demonstrate for the first time that low dose aspirin induces gastric mucosal injury in the intragastric acidity-dependent manner in humans. We also show that aspirin induces dilatation of gastric subepithelial microvessels, which also depends on intragastric acidity. These endoscopic and histopathological changes can be prevented by concomitant treatment with rabeprazole, a proton-pump inhibitor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishino, M., Sugimoto, M., Kodaira, C. et al. Relationship Between Low-Dose Aspirin-Induced Gastric Mucosal Injury and Intragastric pH in Healthy Volunteers. Dig Dis Sci 55, 1627–1636 (2010). https://doi.org/10.1007/s10620-009-0920-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-009-0920-3

Keywords

Navigation