Skip to main content

Advertisement

Log in

Phasic and Tonic Stress–Strain Data Obtained in Intact Intestinal Segment In Vitro

  • Original Paper
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

The function of the small intestine is to a large degree mechanical, and it has the capability of deforming its shape by generating phasic (short-lasting) and tonic (sustained) contraction of the smooth muscle layers. The aim of this study was to obtain phasic and tonic stress–strain (normalized force–length) curves during distension of isolated rat jejunum and ileum (somewhat similar to the isometric length–tension diagram known from in vitro studies of muscle strips). We hypothesized that the circumferential stress–strain data depend on longitudinal stretch of the intestine. Intestinal segments were isolated from ten Wistar rats and put into an organ bath containing 37°C aerated Krebs solution. Ramp distension was done on active and passive intestinal segments at longitudinal stretch ratios of 0, 10, and 20%. Ramp pressures from 0 to 7.5 cmH2O were applied to the intestinal lumen at each longitudinal stretch ratio. Passive conditions were obtained by adding the calcium antagonist papaverine to the solution. Total and passive circumferential stress and strain were computed from the length, diameter and pressure data and from the zero-stress state geometry. The active stress was defined as the total stress minus the passive stress. The total and passive circumferential stresses increased exponentially as a function of the strain. The amplitude of both the total and passive stress was biggest in the jejunum. The total circumferential stress decreased whereas the passive circumferential stress increased when the intestine was stretched longitudinally. Consequently, longitudinal stretching caused the active circumferential stress to decrease. The passive circumferential stress during longitudinal stretching increased more in the jejunum than in the ileum. Therefore, the active circumferential stress decreased most in the jejunum. In conclusion, the circumferential active-passive stress and strain depend on the longitudinal stretch and differs between the jejunum and ileum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gregersen H (2002) Biomechanics of the gastrointestinal tract. New perspectives in motility research and diagnostics. Springer, Berlin Heidelberg New York

    Google Scholar 

  2. Dou Y, Gregersen S, Zhao J, Zhuang F, Gregersen H (2002) Morphometric and biomechanical intestinal remodeling induced by fasting in rats. Dig Dis Sci 47:1158–1168. doi:10.1023/A:1015019030514

    Article  PubMed  Google Scholar 

  3. Dou Y, Lu X, Zhao J, Gregersen H (2002) Morphometric and biomechanical remodelling in the intestine after small bowel resection in the rat. Neurogastroenterol Motil 14:43–53. doi:10.1046/j.1365-2982.2002.00301.x

    Article  PubMed  CAS  Google Scholar 

  4. Zhao J, Yang J, Gregersen H (2003) Biomechanical and morphometric intestinal remodelling during experimental diabetes in rats. Diabetologia 46:1688–1697. doi:10.1007/s00125-003-1233-2

    Article  PubMed  CAS  Google Scholar 

  5. Zhao JB, Sha H, Zhuang FY, Gregersen H (2002) Morphological properties and residual strain along the small intestine in rats. World J Gastroenterol 8:312–317

    PubMed  Google Scholar 

  6. Longhurst PA, Kang JS, Wein AJ, Levin RM (1990) Comparative length–tension relationship of urinary bladder strips from hamsters, rats, guinea-pigs, rabbits and cats. Comp Biochem Physiol A 96:221–225. doi:10.1016/0300-9629(90)90069-5

    Article  PubMed  CAS  Google Scholar 

  7. Drewes AM, Schipper KP, Dimcevski G et al (2002) Multi-modal induction and assessment of allodynia and hyperalgesia in the human oesophagus. Eur J Pain 7:539–549. doi:10.1016/S1090-3801(03)00053-3

    Article  Google Scholar 

  8. Gao C, Arendt-Nielsen L, Liu W, Petersen P, Drewes AM, Gregersen H (2003) Sensory and biomechanical responses to ramp-controlled distension of the human duodenum. Am J Physiol Gastrointest Liver Physiol 284:G461–G471

    PubMed  CAS  Google Scholar 

  9. Gregersen H, Gilja OH, Hausken T et al (2002) Mechanical properties in the human gastric antrum using B-mode ultrasonography and antral distension. Am J Physiol Gastrointest Liver Physiol 283:G368–G375

    PubMed  CAS  Google Scholar 

  10. Yang J, Liao D, Zhao J, Gregersen H (2004) Shear modulus of elasticity of the esophagus. Ann Biomed Eng 32(9):1223–1230. doi:10.1114/B:ABME.0000039356.24821.6c

    Article  PubMed  Google Scholar 

  11. Lynn P, Zagorodnyuk V, Hennig G, Costa M, Brookes S (2005) Mechanical activation of rectal intraganglionic laminar endings in the guinea pig distal gut. J Physiol 564(Pt 2):589–601. doi:10.1113/jphysiol.2004.080879

    Article  PubMed  CAS  Google Scholar 

  12. Dickson EJ, Spencer NJ, Hennig GW, Bayguinov PO, Ren J, Heredia DJ, Smith TK (2007) An enteric occult reflex underlies accommodation and slow transit in the distal large bowel. Gastroenterology 132(5):1912–1924. doi:10.1053/j.gastro.2007.02.047

    Article  PubMed  CAS  Google Scholar 

  13. Pedersen J, Drewes AM, Gregersen H (2005) New analysis for the study of the muscle function in the human oesophagus. Neurogastroenterol Motil 17:767–772. doi:10.1111/j.1365-2982.2005.00652.x

    Article  PubMed  CAS  Google Scholar 

  14. Pedersen J, Gao C, Egekvist H et al (2003) Pain and biomechanical responses to distention of the duodenum in patients with systemic sclerosis. Gastroenterology 124:1230–1239. doi:10.1016/S0016-5085(03)00265-8

    Article  PubMed  Google Scholar 

  15. Weems W (1987) Intestinal fluid flow: its production and control. In: Johnson LR (ed) Physiology of the gastrointestinal tract. Raven, New York

    Google Scholar 

  16. Tottrup A, Forman A, Uldbjerg N, Funch-Jensen P, Andersson KE (1990) Mechanical properties of isolated human esophageal smooth muscle. Am J Physiol 1990:G338–G343

    Google Scholar 

  17. Brookes SJ, D’Antona G, Zagorodnyuk VP, Humphreys CM, Costa M (2001) Propagating contractions of the circular muscle evoked by slow stretch in flat sheets of guinea-pig ileum. Neurogastroenterol Motil 13(6):519–531. doi:10.1046/j.1365-2982.2001.00290.x

    Article  PubMed  CAS  Google Scholar 

  18. Gutierrez JA, Perr HA (1999) Mechanical stretch modulates TGF-beta1 and alpha1(I) collagen expression in fetal human intestinal smooth muscle cells. Am J Physiol 277(5 Pt 1):G1074–G1080

    PubMed  CAS  Google Scholar 

  19. Koh SD, Sanders KM (2001) Stretch-dependent potassium channels in murine colonic smooth muscle cells. J Physiol 533(Pt 1):155–163. doi:10.1111/j.1469-7793.2001.0155b.x

    Article  PubMed  CAS  Google Scholar 

  20. Kunze WA, Furness JB, Bertrand PP, Bornstein JC (1998) Intracellular recording from myenteric neurons of the guinea-pig ileum that respond to stretch. J Physiol 506(Pt 3):827–842. doi:10.1111/j.1469-7793.1998.827bv.x

    Article  PubMed  CAS  Google Scholar 

  21. Miller SM, Szurszewski JH (2003) Circumferential, not longitudinal, colonic stretch increases synaptic input to mouse prevertebral ganglion neurons. Am J Physiol Gastrointest Liver Physiol 285(6):G1129–G1138

    PubMed  CAS  Google Scholar 

  22. Spencer NJ, Hennig GW, Smith TK (2003) Stretch-activated neuronal pathways to longitudinal and circular muscle in guinea pig distal colon. Am J Physiol Gastrointest Liver Physiol 284(2):G231–G241

    PubMed  CAS  Google Scholar 

  23. Miftakhov RN, Wingate DL (1994) Biomechanics of small bowel motility. Med Eng Phys 16(5):406–415. doi:10.1016/1350-4533(90)90007-U

    Article  PubMed  CAS  Google Scholar 

  24. Miftahof R, Akhmadeev N (2007) Dynamics of intestinal propulsion. J Theor Biol 246(2):377–393. doi:10.1016/j.jtbi.2007.01.006

    Article  PubMed  CAS  Google Scholar 

  25. Gabella G (1990) Hypertrophy of visceral smooth muscle. Anat Embryol (Berl) 182(5):409–424. doi:10.1007/BF00178906

    CAS  Google Scholar 

  26. Storkholm JH, Zhao J, Villadsen GE, Hager H, Jensen SL, Gregersen H (2007) Biomechanical remodeling of the chronically obstructed Guinea pig small intestine. Dig Dis Sci 52(2):336–346. doi:10.1007/s10620-006-9431-7

    Article  PubMed  Google Scholar 

  27. Dou Y, Zhao J, Gregersen H (2003) Morphology and stress–strain properties along the small intestine in the rat. J Biomech Eng 125:266–273. doi:10.1115/1.1560140

    Article  PubMed  Google Scholar 

  28. Dou Y, Fan Y, Zhao J, Gregersen H (2006) Longitudinal residual strain and stress–strain relationship in rat small intestine. Biomed Eng Online 5:37. doi:10.1186/1475-925X-5-37

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study were partly financially supported by a grant from Karen Elise Jensen’s Foundation for Jingbo Zhao and NIH grant 1RO1DK072616-01A2. The technicians Ole Sørensen, Torben Madsen, and Jens Sørensen are thanked for handling the animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingbo Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, J., Liao, D. & Gregersen, H. Phasic and Tonic Stress–Strain Data Obtained in Intact Intestinal Segment In Vitro. Dig Dis Sci 53, 3145–3151 (2008). https://doi.org/10.1007/s10620-008-0277-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-008-0277-z

Keywords

Navigation