Skip to main content

Advertisement

Log in

Biomechanical Remodeling of the Chronically Obstructed Guinea Pig Small Intestine

  • Original Paper
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Small intestinal obstruction is a frequently encountered clinical problem. To understand the mechanisms behind obstruction and the clinical consequences, data are needed on the relation between the morphologic and biomechanical remodeling that takes place in the intestinal wall during chronic obstruction. We sought to determine the effect of partial obstruction on mechanical and morphologic properties of the guinea pig small intestine. Partial obstruction was created surgically in 2 groups of animals living for 2 and 4 weeks. Controls were sham operated and lived for 4 weeks. A combined impedance planimetry–high-frequency ultrasound system was designed to measure the luminal cross-sectional area and wall thickness. These measures were used to compute the circumferential stress and strain of the excised intestinal segments. The incremental elastic modulus was obtained by using nonlinear fitting of the stress–strain curve. Histologic analysis and the measurements of total wall collagen were also performed. The luminal cross-sectional area, wall thickness, and elastic modulus in circumferential direction increased in a time-dependent manner proximal to the obstruction site (P < 0.01), whereas no differences in these parameters were found distal to the obstruction site (P > 0.25). The circumferential stress–strain curves of the proximal segments in 2- and 4-week groups shifted to the left, indicating the intestinal wall became stiffer. Histologic examination revealed a massive increase in the thickness of the muscle layer especially the circular smooth muscle layer (P < 0.05). The collagen content proximal to the obstruction site was significantly larger in the partially obstructed animals compared to controls (P < 0.05). No difference was found distal to the obstruction site. Strong correlation was found between the collagen content and the elastic modulus at stress levels of 70 kPa stress (P < 0.01) and 10 kPa (P < 0.05) proximal to the obstruction site suggesting that the alteration of collagen has great impact on the mechanical remodeling. The morphologic and biomechanical remodeling likely influence the function of the intestine affected by partial obstructed intestine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Siegle ML, Ehrlein HJ (1989) Effects of various agents on ileal postprandial motor patterns and transit of chyme in dogs. Am J Physiol 257:G698–G703

    PubMed  CAS  Google Scholar 

  2. Gregersen H, Orvar K, Christensen J (1992) Biomechanical properties of duodenal wall and duodenal tone during phase I and phase II of the MMC. Am J Physiol 263:G795–G801

    PubMed  CAS  Google Scholar 

  3. Dou Y, Gregersen S, Zhao J, et al. (2002) Morphometric and biomechanical intestinal remodeling induced by fasting in rats. Dig Dis Sci 47:1158–1168

    Article  PubMed  Google Scholar 

  4. Dou Y, Lu X, Zhao J, Gregersen H (2002) Morphometric and biomechanical remodelling in the intestine after small bowel resection in the rat. Neurogastroenterol Motil 14:43–53

    Article  PubMed  CAS  Google Scholar 

  5. Zhao J, Yang J, Gregersen H (2003) Biomechanical and morphometric intestinal remodelling during experimental diabetes in rats. Diabetologia 46:1688–1697

    Article  PubMed  CAS  Google Scholar 

  6. Zhao J, Liao D, Yang J, Gregersen H (2003) Viscoelastic behavior of small intestine in streptozotocin-induced diabetic rats. Dig Dis Sci 48:2271–2277

    Article  PubMed  Google Scholar 

  7. Zhao J, Yang J, Vinter-Jensen L, et al. (2002) The morphometry and biomechanical properties of the rat small intestine after systemic treatment with epidermal growth factor. Biorheology 39:719–733

    PubMed  CAS  Google Scholar 

  8. Bertoni S, Gabella G (2001) Hypertrophy of mucosa and serosa in the obstructed intestine of rats. J Anat 199:725–734

    Article  PubMed  CAS  Google Scholar 

  9. Chang IY, Glasgow NJ, Takayama I, et al. (2001) Loss of interstitial cells of Cajal and development of electrical dysfunction in murine small bowel obstruction. J Physiol 536:555–568

    Article  PubMed  CAS  Google Scholar 

  10. Canavese M, Geuna S, Poncino A, Giacobini Robecchi MG (1992) Hyperplasia of the intestinal smooth muscle tissue proximal to a partial surgical stenosis: an autoradiographic study [in Italian]. Boll Soc Ital Biol Sper 68:9–16

    PubMed  CAS  Google Scholar 

  11. Gabella G (1990) Hypertrophy of visceral smooth muscle. Anat Embryol (Berl) 182:409–424

    CAS  Google Scholar 

  12. Fung YC (1993) Biomechanics. Properties of living tissues. Springer-Verlag, Berlin

    Google Scholar 

  13. Gregersen H (2002) Biomechanics of the Gastrointestinal Tract. Springer-Verlag, London

    Google Scholar 

  14. Storkholm JH, Villadsen GE, Jensen SL, Gregersen H (1998) Mechanical properties and collagen content differ between isolated guinea pig duodenum, jejunum, and distal ileum. Dig Dis Sci 43:2034–2041

    Article  PubMed  CAS  Google Scholar 

  15. Lu X, Zhao J, Gregersen H (2005) Small intestinal morphometric and biomechanical changes during physiological growth in rats. J Biomech 38:417–426

    Article  PubMed  Google Scholar 

  16. Gabella G (1975) Hypertrophy of intestinal smooth muscle. Cell Tissue Res 163:199–214

    Article  PubMed  CAS  Google Scholar 

  17. Schulze-Delrieu K, Brown B, Herman B, et al. (1995) Preservation of peristaltic reflex in hypertrophied ileum of guinea pig. Am J Physiol 269:G49–G59

    PubMed  CAS  Google Scholar 

  18. Gregersen H, Kassab G (1996) Biomechanics of the gastrointestinal tract. Neurogastroenterol Motil 8:277–297

    PubMed  CAS  Google Scholar 

  19. Gregersen H, Stodkilde-Jorgensen H, Djurhuus JC, Mortensen SO (1998) The four-electrode impedance technique: a method for investigation of compliance in luminal organs. Clin Phys Physiol Meas 9(Suppl A):61–64

    Google Scholar 

  20. Gregersen H, Andersen MB (1991) Impedance measuring system for quantification of cross-sectional area in the gastrointestinal tract. Med Biol Eng Comput 29:108–110

    Article  PubMed  CAS  Google Scholar 

  21. Lose G, Colstrup H, Saksager K, Kristensen JK (1986) New probe for measurement of related values of cross-sectional area and pressure in a biological tube. Med Biol Eng Comput 24:488–492

    Article  PubMed  CAS  Google Scholar 

  22. Gregersen H, Kraglund K, Djurhuus JC (1990) Variations in duodenal cross-sectional area during the interdigestive migrating motility complex. Am J Physiol 259:G26–G31

    PubMed  CAS  Google Scholar 

  23. Storkholm JH, Villadsen GE, Krogh K, et al. (1997) Dimensions and mechanical properties of porcine aortic segments determined by combined impedance planimetry and high-frequency ultrasound. Med Biol Eng Comput 35:21–26

    Article  PubMed  CAS  Google Scholar 

  24. Storkholm JH, Frobert O, Gregersen H (1997) Static elastic wall properties of the abdominal porcine aorta in vitro and in vivo. Eur J Vasc Endovasc Surg 13:31–36

    Article  PubMed  CAS  Google Scholar 

  25. Armitage P, Berry G (1994) Statistical methods in medical research. 2nd edn. Blackwell Scientific Publications, Oxford

    Google Scholar 

  26. Bertoni S, Gabella G, Ghizzardi P, et al. (2004) Motor responses of rat hypertrophic intestine following chronic obstruction. Neurogastroenterol Motil 16:365–374

    Article  PubMed  CAS  Google Scholar 

  27. Earlam RJ (1971) Ganglion cell changes in experimental stenosis of the gut. Gut 12:393–398

    PubMed  CAS  Google Scholar 

  28. Gabella G, Yamey A (1977) Synthesis of collagen by smooth muscle in the hyertrophic intestine. Q J Exp Physiol Cogn Med Sci 62:257–264

    PubMed  CAS  Google Scholar 

  29. Okada A, Okamoto E (1971) Submucous plexus in hypertrophied intestine. J Neurovisc Relat 32:217–223

    Article  PubMed  CAS  Google Scholar 

  30. Okada A Okamoto (1971). Myenteric plexus in hypertrophied intestine. J Neurovisc Relat 32:75–89

    Article  PubMed  CAS  Google Scholar 

  31. Gabella G (1984) Hypertrophic smooth muscle. V. Collagen and other extracellular materials. Vascularization. Cell Tissue Res 235:275–283

    Article  PubMed  CAS  Google Scholar 

  32. Bornstein P, Sage H (1980) Structurally distinct collagen types. Annu Rev Biochem 49:957–1003

    Article  PubMed  CAS  Google Scholar 

  33. Fackler K, Klein L, Hiltner A (1981) Polarizing light microscopy of intestine and its relationship to mechanical behaviour. J Microsc 124:305–311

    PubMed  CAS  Google Scholar 

  34. Gabella G (1987) The cross-ply arrangement of collagen fibres in the submucosa of the mammalian small intestine. Cell Tissue Res 248:491–477

    Article  PubMed  CAS  Google Scholar 

  35. Orberg J, Baer E, Hiltner A (1983) Organization of collagen fibers in the intestine. Connect Tissue Res 11:285–297

    PubMed  CAS  Google Scholar 

  36. Roach MR, Burton AC (1957) The reason for the shape of the distensibility curves of arteries. Can J Biochem Physiol 35:681–690

    PubMed  CAS  Google Scholar 

  37. Sims TJ, Rasmussen LM, Oxlund H, Bailey AJ (1996) The role of glycation cross-links in diabetic vascular stiffening. Diabetologia 39:946–951

    PubMed  CAS  Google Scholar 

  38. Enochsson L, Nylander G, Ohman U (1982) Effects of intraluminal pressure on regional blood flow in obstructed and unobstructed small intestines in the rat. Am J Surg 144:558–561

    Article  PubMed  CAS  Google Scholar 

  39. Morton LF, Barnes MJ (1982) Collagen polymorphism in the normal and diseased blood vessel wall. Investigation of collagens types I, III and V. Atherosclerosis 42:41–51

    Article  PubMed  CAS  Google Scholar 

  40. Gabella G (1979) Hypertrophic smooth muscle. I. Size and shape of cells, occurrence of mitoses. Cell Tissue Res 201:63–78

    Article  PubMed  CAS  Google Scholar 

  41. Graham MF, Diegelmann RF, Elson CO, et al. (1988) Collagen content and types in the intestinal strictures of Crohn's disease. Gastroenterology 94:257–265

    PubMed  CAS  Google Scholar 

  42. Mittal RK, Ren J, McCallum RW, et al. (1990) Modulation of feline esophageal contractions by bolus volume and outflow obstruction. Am J Physiol 258:G208–G215

    PubMed  CAS  Google Scholar 

  43. Cullen BM, Harkness RD (1968) Collagen formation and changes in cell population in the rat's uterus after distension with wax. Q J Exp Physiol Cogn Med Sci 53:33–42

    PubMed  CAS  Google Scholar 

  44. Hernanz-Schulman M (2003) Infantile hypertrophic pyloric stenosis. Radiology 227:319–331

    PubMed  Google Scholar 

  45. Miyamoto M, Egami K, Maeda S, Ohkawa K, Tanaka N, Uchida E, Tajiri T (2005) Hirschsprung's disease in adults: report of a case and review of the literature. J Nippon Med Sch 72:113–120

    Article  PubMed  Google Scholar 

  46. Park W, Vaezi MF (2005) Etiology and pathogenesis of achalasia: the current understanding. Am J Gastroenterol 100:1404–1414

    Article  PubMed  Google Scholar 

  47. Hsieh TK, Chen AC, Wu SF, Chen W (2005) Postoperative intussusception in children with enterostomy. Acta Paediatr Taiwan 46:166–169

    PubMed  Google Scholar 

  48. Zollinger RM Jr (1986) Primary neoplasms of the small intestine. Am J Surg 151:654–658

    Article  CAS  Google Scholar 

  49. Froehlich F, Juillerat P, Mottet C, Felley C, Vader JP, Burnand B, Gonvers JJ, Michetti P (2005) Obstructive fibrostenotic Crohn's disease. Digestion 71:29–30

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Gregersen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Storkholm, J.H., Zhao, J., Villadsen, G.E. et al. Biomechanical Remodeling of the Chronically Obstructed Guinea Pig Small Intestine. Dig Dis Sci 52, 336–346 (2007). https://doi.org/10.1007/s10620-006-9431-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-006-9431-7

Keywords

Navigation