Skip to main content
Log in

Splitting iterative methods for fuzzy system of linear equations

  • Published:
Computational Mathematics and Modeling Aims and scope Submit manuscript

A class of splitting iterative methods is considered for solving fuzzy system of linear equations, which cover Jacobi, Gauss–Seidel, SOR, SSOR, and their block variants proposed by others before. We give a convergence theorem for a regular splitting, where the corresponding iterative methods converge to the strong fuzzy solution for any initial vector and fuzzy right-hand vector. Two schemes of splitting are given to illustrate the theorem. Numerical experiments further show the efficiency of the splitting iterative methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Abbasbandy, R. Ezzati, and A. Jafarian, “LU decomposition method for solving fuzzy system of linear equations,” Appl. Math. Comput., 172, 633–643 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  2. S. Abbasbandy and A. Jafarian, “Steepest descent method for system of fuzzy linear equations,” Appl. Math. Comput., 175, 823–833 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  3. S. Abbasbandy, A. Jafarian, and R. Ezzati, “Conjugate gradient method for fuzzy symmetric positive-definite system of linear equations,” Appl. Math. Comput., 171, 1184–1191 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  4. T. Allahviranloo, “Numerical methods for fuzzy system of linear equations,” Appl. Math. Comput., 155, 493–502 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  5. T. Allahviranloo, “Successive overrelaxation iterative method for fuzzy system of linear equations,” Appl. Math. Comput., 162, 189–196 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  6. B. Asady, S. Abbasbandy, and M. Alavi, “Fuzzy general linear systems,” Appl. Math. Comput., 169, 34–40 (2005) .

    Article  MATH  MathSciNet  Google Scholar 

  7. Z.-Z. Bai, G.H. Golub, L.-Z. Lu, and J.-F. Yin, “Block triangular and skew-Hermitian splitting methods for positive-definite linear systems,” SIAM J. Sci. Comput., 26, 844–863 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  8. Z.-Z. Bai, G.H. Golub, and M. K. Ng, “Hermitian and skew-Hermitian splitting methods for non-Hermitian positive-definite linear systems,” SIAM J. Matrix Anal. Appl., 24, 603–626 (2003) .

    Article  MATH  MathSciNet  Google Scholar 

  9. Z.-Z. Bai, G.H. Golub, and J.-Y. Pan, “Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems,” Numer. Math., 98, 1–32 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  10. J.J. Buckley, “Solving fuzzy equations in economics and finance,” Fuzzy Sets and Systems, 48, 289–296 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  11. S. L. Chang and L. A. Zadeh, “On fuzzy mapping and control,” IEEE Trans., Syst. Man Cyb., 2, 30–34 (1972).

    MATH  MathSciNet  Google Scholar 

  12. M. Friedman, M. Ming, and A. Kandel, “Fuzzy linear systems,” Fuzzy Sets and Systems, 96, 201–209 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  13. H. Minc, Nonnegative Matrices, Wiley, New York (1988).

    MATH  Google Scholar 

  14. S. S. Rao and L. Chen, “Numerical solution of fuzzy linear equations in engineering analysis,” Int. J. Numer. Methods Eng., 42, 829–846 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  15. R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ (1962).

    Google Scholar 

  16. K.Wang and B. Zheng, “Symmetric successive overrelaxation methods for fuzzy linear systems,” Appl. Math. Comput., 175, 891–901 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  17. K. Wang and B. Zheng, “Block iterative methods for fuzzy linear systems,” J. Appl. Math. Comput., 25, 119–136 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  18. L.A. Zadeh, “Fuzzy sets,” Inform. Control, 8, 338–353 (1965).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Feng Yin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, JF., Wang, K. Splitting iterative methods for fuzzy system of linear equations. Comput Math Model 20, 326–335 (2009). https://doi.org/10.1007/s10598-009-9039-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10598-009-9039-9

Keywords

Navigation