Skip to main content

Advertisement

Log in

Reduced order models for many-query subsurface flow applications

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

Inverse modeling involves repeated evaluations of forward models, which can be computationally prohibitive for large numerical models. To reduce the overall computational burden of these simulations, we study the use of reduced order models (ROMs) as numerical surrogates. These ROMs usually involve using solutions to high-fidelity models at different sample points within the parameter space to construct an approximate solution at any point within the parameter space. This paper examines an input–output relational approach based on Gaussian process regression (GPR). We show that these ROMs are more accurate than the linear lookup tables with the same number of high-fidelity simulations. We describe an adaptive sampling procedure that automatically selects optimal sample points and demonstrate the use of GPR to a smooth response surface and a response surface with abrupt changes. We also describe how GPR can be used to construct ROMs for models with heterogeneous material properties. Finally, we demonstrate how the use of a GPR-based ROM in two many-query applications—uncertainty quantification and global sensitivity analysis—significantly reduces the total computational effort.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schmit, L.A., Farshi, B.: Some approximation concepts for structural synthesis. AIAA J. 12, 692–699 (1974)

    Article  Google Scholar 

  2. Barthelemy, J.F.M., Haftka, R.T.: Approximation concepts for optimum structural design—a review. Struct. Multidisc. Optim. 5, 129–144 (1993)

    Article  Google Scholar 

  3. Simpson, T., Peplinski, J., Koch, P., Allen, J.: Metamodels for computer-based engineering design: survey and recommendations. Eng. Comput. 17, 129–150 (2001)

    Article  Google Scholar 

  4. Lucia, D.J., Beran, P.S., Silva, W.A.: Reduced-order modeling: new approaches for computational physics. Progr. Aero. Sci. 40, 51–117 (2004)

    Article  Google Scholar 

  5. Saridakis, K.M., Dentsoras, A.J.: Soft computing in engineering design—a review. Adv. Eng. Informat. 22, 202–221 (2008)

    Article  Google Scholar 

  6. Forrester, A.I.J., Keane, A.J.: Recent advances in surrogate-based optimization. Progr. Aero. Sci. 45, 50–79 (2009)

    Article  Google Scholar 

  7. Razavi, S., Tolson, B.A., Burn, D.H.: Review of surrogate modeling in water resources. Water Resour. Res. 48, W07401 (2012)

    Article  Google Scholar 

  8. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)

    Google Scholar 

  9. Marrel, A., Iooss, B., Van Dorpe, F., Volkova, E.: An efficient methodology for modeling complex computer codes with Gaussian processes. Comput. Stat. Data Anal. 52, 4731–4744 (2008)

    Article  Google Scholar 

  10. Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P.: Design and analysis of computer experiments. Statist. Sci. 4, 409–435 (1989)

    Article  Google Scholar 

  11. Kleijnen, J.P.C.: Kriging metamodeling in simulation: a review. Eur. J. Oper. Res. 192, 707–716 (2009)

    Article  Google Scholar 

  12. Prudhomme, C., Rovas, D.V., Veroy, K., Machiels, L., Maday, Y., Patera, A.T., Turinici, G.: Reliable real-time solution of parametrized partial differential equations: reduced-basis output bound methods. J. Fluids Eng. 124, 70–80 (2002)

    Article  Google Scholar 

  13. Cardoso, M.A., Durlofsky, L.J., Sarma, P.: Development and application of reduced-order modeling procedures for subsurface flow simulation. Int. J. Numer. Meth. Engng. 77, 1322–1350 (2009)

    Article  Google Scholar 

  14. Lieberman, C., Willcox, K., Ghattas, O.: Parameter and state model reduction for large-scale statistical inverse problems. SIAM J. Sci. Comput. 32, 2523 (2010)

    Article  Google Scholar 

  15. Finsterle, S., Doughty, C., Kowalsky, M.B., Moridis, G.J., Pan, L., Xu, T., Zhang, Y., Pruess, K.: Advanced vadose zone simulations using TOUGH. Vadose Zone J. 7, 601 (2008)

    Article  Google Scholar 

  16. Cybenko, G.: Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst. (MCSS) 5, 455–455 (1992)

    Article  Google Scholar 

  17. Zadeh, L.A.: Fuzzy logic. Comput. 21, 83–93 (1988)

    Article  Google Scholar 

  18. MacKay, D.J.C.: Information-based objective functions for active data selection. Neural Comput. 4, 590–604 (1992)

    Article  Google Scholar 

  19. Razavi, S., Tolson, B.A., Burn, D.H.: Numerical assessment of metamodelling strategies in computationally intensive optimization. Environ. Model Softw. 34, 67–86 (2012)

    Article  Google Scholar 

  20. Iooss, B., Boussouf, L., Feuillard, V., Marrel, A.: Numerical studies of the metamodel fitting and validation processes. Int. J. Advance. Syst. Meas. 3, 11–21 (2010)

    Google Scholar 

  21. Finsterle, S.: iTOUGH2 User’s Guide, pp. 1–137 (2007)

  22. Marrel, A., Iooss, B., Laurent, B., Roustant, O.: Calculations of Sobol indices for the Gaussian process metamodel. Reliab. Eng. Syst. Saf. 94, 742–751 (2009)

    Article  Google Scholar 

  23. Hombal, V., Mahadevan, S.: Bias minimization in Gaussian process surrogate modeling for uncertainty quantification. Int. J. Uncert. Quantific. 1, 321–349 (2011)

    Article  Google Scholar 

  24. Rohmer, J., Foerster, E.: Global sensitivity analysis of large-scale numerical landslide models based on Gaussian-process meta-modeling. Comput. Geosci. 37, 917–927 (2011)

    Article  Google Scholar 

  25. Conti, S., O’Hagan, A.: Bayesian emulation of complex multi-output and dynamic computer models. J. Stat. Plann. Infer. 140, 640–651 (2009)

    Article  Google Scholar 

  26. Alvarez, M.A.: Kernels for vector-valued functions: a review. Foundations Trend. Mach. Learn. 4, 195–266 (2012)

    Article  Google Scholar 

  27. Higdon, D., Gattiker, J., Williams, B., Rightley, M.: Computer model calibration using high-dimensional output. J. Am. Stat. Assoc. 103, 570–583 (2008)

    Article  Google Scholar 

  28. Lawrence, N.D.: Gaussian process latent variable models for visualisation of high dimensional data. Adv. Neural. Inform. Process. Syst. 16, 329–336 (2004)

    Google Scholar 

  29. Bayarri, M.J., Berger, J.O., Cafeo, J., Garcia-Donato, G., Liu, F., Palomo, J., Parthasarathy, R.J., Paulo, R., Sacks, J., Walsh, D.: Computer model validation with functional output. Ann. Stat. 35, 1874–1906 (2007)

    Article  Google Scholar 

  30. Drignei, D., Forest, C.E., Nychka, D.: Parameter estimation for computationally intensive nonlinear regression with an application to climate modeling. Ann. Appl. Stat. 2, 1217–1230 (2008)

    Article  Google Scholar 

  31. Marrel, A., Iooss, B., Jullien, M., Laurent, B., Volkova, E.: Global sensitivity analysis for models with spatially dependent outputs. Environmetrics 22, 383–397 (2010)

    Article  Google Scholar 

  32. Wang, J., Fleet, D., Hertzmann, A.: Gaussian process dynamical models. Adv. Neural. Inform. Process. Syst. 18, 1441 (2006)

    Google Scholar 

  33. Neal, R.M.: Bayesian learning for neural networks. Springer, New York (1996)

    Book  Google Scholar 

  34. Rasmussen, C.E., Nickisch, H.: Gaussian processes for machine learning (GPML) toolbox. J. Mach. Learn. Res. 11, 3011–3015 (2010)

    Google Scholar 

  35. Carr, J.C., Beatson, R.K., Cherrie, J.B., Mitchell, T.J., Fright, W.R., McCallum, B.C., Evans, T.R.: Reconstruction and representation of 3D objects with radial basis functions. Proceedings of ACM SIGGRAPH (2001)

  36. Bichon, B.J., Eldred, M.S., Swile, L.P., Mahadevan, S., Mcfarland, J.M.: Efficient global reliability analysis for nonlinear implicit performance functions. AIAA J. 46, 2459–2468 (2008)

    Article  Google Scholar 

  37. Bui-Thanh, T., Ghattas, O., Higdon, D.: Adaptive Hessian-based non-stationary Gaussian process response surface method for probability density approximation with application to Bayesian solution of large-scale inverse problems. SIAM J. Sci. Comput. 34, A2837—A2871 (2012)

    Article  Google Scholar 

  38. Gramacy, R.B., Lee, H.: Adaptive design and analysis of supercomputer experiments. Technometrics 51(2), 130–142 (2009)

    Article  Google Scholar 

  39. Janusevskis, J., Le, R.R., Ginsbourger, D.: Parallel expected improvements for global optimization: summary, bounds and speed-up. OMD2 deliverable Nmbr. 2.1.1-B (2011)

  40. Finsterle, S., Pruess, K.: Solving the estimation-identification problem in two-phase flow modeling. Water Resour. Res. 31, 913–924 (1995)

    Article  Google Scholar 

  41. Pruess, K., Moridis, G., Oldenburg, C.: TOUGH2 user’s guide, version 2.0 (1999)

  42. Paciorek, C., Schervish, M.: Nonstationary covariance functions for Gaussian process regression. Adv. Neural. Inform. Process. Syst. 16, 273–280 (2004)

    Google Scholar 

  43. Homma, T., Saltelli, A.: Importance measures in global sensitivity analysis of nonlinear models. Reliab. Eng. Syst. Saf. 52, 1–17 (1996)

    Article  Google Scholar 

  44. Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., Tarantola, S.: Global sensitivity analysis: the primer. Wiley, Chichester (2008)

    Google Scholar 

  45. Archer, G., Saltelli, A., Sobol, I.M.: Sensitivity measures, ANOVA-like techniques and the use of bootstrap. J. Stat. Comput. Simulat. 58, 99–120 (1997)

    Article  Google Scholar 

  46. Rozza, G., Huynh, D.B.P., Patera, A.T.: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch. Computat. Methods Eng. 15, 229–275 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Shu Heng Pau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pau, G.S.H., Zhang, Y. & Finsterle, S. Reduced order models for many-query subsurface flow applications. Comput Geosci 17, 705–721 (2013). https://doi.org/10.1007/s10596-013-9349-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-013-9349-z

Keywords

Navigation