Skip to main content

Advertisement

Log in

Conservation genetics of the black rhinoceros, Diceros bicornis bicornis, in Namibia

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Poaching and habitat destruction across sub-Saharan Africa brought the black rhinoceros (Diceros bicornis) close to extinction. Over the past few decades, however, one of four subspecies, D. b. bicornis, has experienced a significant population increase as a consequence of its protection within Etosha National Park (ENP), Namibia. We report here on the level and spatial distribution of black rhinoceros genetic diversity within ENP. Using nine microsatellite loci, genetic variation was assessed from 144 individuals. Our results are consistent with the observation of lower levels of genetic diversity in D. b. bicornis, when compared to D. b. michaeli, but greater diversity when compared to D. b. minor. We also showed that ENP’s black rhino genetic diversity is well represented in Waterberg National Park, originally founded with ENP individuals. We found no genetic signature of a recent bottleneck in ENP, however, suggesting that the genetic diversity within ENP has not been adversely affected by the recent severe population decline. Using Bayesian clustering methods, we observed no significant population structure within ENP, but positive spatial genetic correlation is observed at distances up to 25 km. This relationship exists in females but not males, suggesting reduced dispersal among females, the first evidence of limited female dispersal or philopatry in any species of rhinoceros.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allendorf FW, Leary RF (1986) Hetozygosity and fitness in natural populations of animals. In: Soule ME (ed) Conservation biology: the science of scarcity and diversity. Sinauer Associates, Sunderland, MA, pp 57–76

    Google Scholar 

  • Beaumont MA (1999) Detecting population expansion and decline using microsatellites. Genetics 153:2013–2029

    PubMed  CAS  Google Scholar 

  • Brown SM, Houlden BA (1999) Isolation and characterization of microsatellite markers in the black rhinoceros (Diceros bicornis). Mol Ecol 8:1559–1561

    Article  PubMed  CAS  Google Scholar 

  • Brown SM, Houlden BA (2000) Conservation genetics of the black rhinoceros (Diceros bicornis). Cons Genet 1:365–370

    Article  CAS  Google Scholar 

  • Cardillo M, Mace GM, Jones KE et al (2005) Multiple causes of high extinction risk in large mammal species. Science 309:1239–1241

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Durand E, Forbes F, Francois O (2007) Bayesian clustering algorithms ascertaining spatial population structure: a new computer program and a comparison study. Mol Ecol Notes 7:747–756

    Article  Google Scholar 

  • CITES (2007) Black rhinoceros conservation and management in Namibia. Available at: http://www.cites.org/common/cop/14/inf/E14i-43.pdf. Accessed 29 July 2010

  • CITES (2009) Black Rhinoceros Conservation and Management in Namibia. Available at: www.cites.org/common/cop/13/inf/E13i-21.pdf. Accessed 29 July 2010

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    PubMed  CAS  Google Scholar 

  • Cunningham J, Harley EH, O’Ryan C (1999) Isolation and characterization of microsatellite loci in black rhinoceros (Diceros bicornis). Electrophoresis 20:1778–1780

    Article  PubMed  CAS  Google Scholar 

  • Di Rienzo A, Peterson AC, Garza JC et al (1994) Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci USA 91:3166

    Article  PubMed  CAS  Google Scholar 

  • Dinerstein E, McCracken GF (1990) Endangered greater one-horned rhinoceros carry high levels of genetic variation. Conserv Biol 4:417–422

    Article  Google Scholar 

  • Du Toit R, Foose TJ, Cummings DHM (1987) Small population management of black rhino. In: Proceedings of African Rhino Workshop, Cincinnati, October 1986. 9:31–34

  • Durand E, Jay F, Gaggiotti OE, François O (2009) Spatial inference of admixture proportions and secondary contact zones. Mol Biol Evol 26:1963–1973

    Article  PubMed  CAS  Google Scholar 

  • Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5:435–445

    Article  PubMed  CAS  Google Scholar 

  • Ellegren H, Moore S, Robinson N et al (1997) Microsatellite evolution—a reciprocal study of repeat lengths at homologous loci in cattle and sheep. Mol Biol Evol 14:854–860

    PubMed  CAS  Google Scholar 

  • Emslie R, Brooks M (1999) African Rhinoceros status and conservation action plan. IUCN/SSC African Rhino Specialist Group. IUCN, Gland, Switzerland and Cambridge, UK

    Google Scholar 

  • Fedy BC, Martin K, Ritland C, Young J (2008) Genetic and ecological data provide incongruent interpretations of population structure and dispersal in naturally subdivided populations of white-tailed ptarmigan (Lagopus leucura). Mol Ecol 17:1905–1917

    Article  PubMed  CAS  Google Scholar 

  • Fernando P, Polet G, Foead N et al (2006) Genetic diversity, phylogeny and conservation of the Javan rhinoceros (Rhinoceros sondaicus). Cons Genet 7:439–448

    Article  CAS  Google Scholar 

  • François O, Ancelet S, Guillot G (2006) Bayesian clustering using hidden Markov random fields in spatial population genetics. Genetics 174:805–816

    Article  PubMed  Google Scholar 

  • François O, Blum MG, Jakobsson M, Rosenberg NA (2008) Demographic history of european populations of Arabidopsis thaliana. PLoS Genet 4:e1000075

    Article  PubMed  Google Scholar 

  • Goddard J (1966) Mating and courtship of the black rhinoceros. Afr J Ecol 4:69–75

    Article  Google Scholar 

  • Goudet J (2000) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Available at: http://www.unil.ch/izea/softwares/fstat.html. Accessed 29 July 2010

  • Goudet J, Raymond M, de Meeüs T, Rousset F (1996) Testing differentiation in diploid populations. Genetics 144:1933–1940

    PubMed  CAS  Google Scholar 

  • Greenwood PJ (1980) Mating systems, philopatry and dispersal in birds and mammals. Anim Behav 28:1140–1162

    Article  Google Scholar 

  • Guo SW, Thompson EA (1992) Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48:361–372

    Article  PubMed  CAS  Google Scholar 

  • Hailer F, Helander B, Folkestad AO et al (2006) Bottlenecked but long-lived: high genetic diversity retained in white-tailed eagles upon recovery from population decline. Biol Lett 2:316–319

    Article  PubMed  Google Scholar 

  • Harley EH, Baumgarten I, Cunningham J, O’Ryan C (2005) Genetic variation and population structure in remnant populations of black rhinoceros, Diceros bicornis, in Africa. Mol Ecol 14:2981–2990

    Article  PubMed  CAS  Google Scholar 

  • Hazlitt SL, Eldridge MD, Goldizen AW (2004) Fine-scale spatial genetic correlation analyses reveal strong female philopatry within a brush-tailed rock-wallaby colony in southeast Queensland. Mol Ecol 13:3621–3632

    Article  PubMed  CAS  Google Scholar 

  • Hofmeyr JM, Ebedes H, Fryer REM, De Bruine JR (1975) The capture and translocation of the black rhinoceros (Diceros bicornis) in South West-Africa. Modoqua 9:35–44

    Google Scholar 

  • Hrabar H, Du Toit JT (2005) Dynamics of a protected black rhino (Diceros bicornis) population: Pilanesberg National Park, South Africa. Anim Conserv 8:259–267

    Article  Google Scholar 

  • Hutchins M, Kreger MD (2006) Rhinoceros behavior: implications for captive management and conservation. Int Zoo Year 40:150–173

    Article  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  PubMed  CAS  Google Scholar 

  • Joubert (1971) The past and present distribution and status of the black rhinoceros (Diceros bicornis) in southwest Africa. Modoqua 4:33–43

    Google Scholar 

  • Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241

    Article  Google Scholar 

  • Kiwia HYD (1989) Ranging patterns of the black rhinoceros (Diceros bicornis (L.)) in Ngorongoro Crater, Tanzania. Afr J Ecol 27:305–312

    Article  Google Scholar 

  • Lent PC, Fike B (2003) Home ranges, movements and spatial relationships in an expanding population of black rhinoceros in the Great Fish River Reserve, South Africa. South Afr J Wildlife Res 33:109–118

    Google Scholar 

  • Linklater WL, Swaisgood RR (2008) Reserve size, conspecific density, and translocation success for black rhinoceros. J Wildl Manage 72:1059–1068

    Article  Google Scholar 

  • Luikart G, Allendorf FW, Cornuet JM, Sherwin WB (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered 89:238–247

    Article  PubMed  CAS  Google Scholar 

  • Marth GT, Czabarka E, Murvai J, Sherry ST (2004) The allele frequency spectrum in genome-wide human variation data reveals signals of differential demographic history in three large world populations. Genetics 166:351–372

    Article  PubMed  CAS  Google Scholar 

  • Martin EB (1994) Rhino Poaching in Namibia from 1980 to 1990 and the Illegal Trade in the Horn. Pachyderm 18:39–51

    Google Scholar 

  • Maruyama T, Fuerst PA (1985) Population bottlenecks and nonequilibrium models in population genetics. II. Number of alleles in a small population that was formed by a recent bottleneck. Genetics 111:675–689

    PubMed  CAS  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • O’Ryan C, Flamand JRB, Harley EH (1994) Mitochondrial DNA variation in black rhinoceros (Diceros bicornis): conservation management implications. Conserv Biol 8:495–500

    Article  Google Scholar 

  • Owen-Smith RN (1975) The Social Ethology of the White Rhinoceros Ceratotberium simum (Burchell 1817*). Zeitschrift für Tierpsychologie 38:337–384

    Article  Google Scholar 

  • Owen-Smith RN (2004) Rhinoceroces. In: Hutchins M, Kleiman DG, Geist V, McDade M (eds) Grzimek’s animal life encyclopedia. Gale Group, Farmington Hills, MI, pp 249–262

    Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Peakall R, Ruibal M, Lindenmayer DB (2003) Spatial autocorrelation analysis offers new insights into gene flow in the Australian bush rat, Rattus fuscipes. Evolution 57:1182–1195

    PubMed  Google Scholar 

  • Piry S, Luikart G, Cornuet JM (1999) Computer note. BOTTLENECK: a computer program for detecting recent reductions in the effective size using allele frequency data. J Hered 90:502

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248

    Google Scholar 

  • Rousset F (2008) GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  Google Scholar 

  • Rubenstein DI (1986) Ecology and sociality in horses and zebras. In: Rubenstein DI, Wrangham RW (eds) Ecological aspects of social evolution. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry. WH Freeman and Company, New York, NY

    Google Scholar 

  • Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A (2002) Bayesian measures of model complexity and fit. J R Stat Soc B Methodol 64:583–616

    Article  Google Scholar 

  • Swart MKJ, Ferguson JWH (1997) Conservation implications of genetic differentiation in southern African populations of black rhinoceros (Diceros bicornis). Conserv Biol 11:79–83

    Article  Google Scholar 

  • Swart MK, Ferguson JW, du Toit R, Flamand JR (1994) Substantial genetic variation in southern African black rhinoceros (Diceros bicornis). J Hered 85:261–266

    PubMed  CAS  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    PubMed  CAS  Google Scholar 

  • Tishkoff SA, Reed FA, Friedlaender FR et al (2009) The genetic structure and history of Africans and African Americans. Science 324:1035–1044

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Wang X, Ryder OA et al (2002) Genetic diversity and conservation of endangered animal species. Pure Appl Chem 74:575–584

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Peter Smouse and Al Roca for many helpful comments on the manuscript. The collection of samples was funded by the WWF—Africa Rhino Program, Swiss Federal Veterinary Office, African Wildlife Foundation and the Ismer family and friends. The molecular work was funded by the National Science and Engineering Research Council (Canada; PTB) and multiple Summer Work Experience Program grants (Queen’s: PJVCDG & PTB). We thank Michael Kim for his laboratory assistance at the onset of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Van Coeverden de Groot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Coeverden de Groot, P.J., Putnam, A.S., Erb, P. et al. Conservation genetics of the black rhinoceros, Diceros bicornis bicornis, in Namibia. Conserv Genet 12, 783–792 (2011). https://doi.org/10.1007/s10592-011-0185-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-011-0185-1

Keywords

Navigation