Skip to main content
Log in

Stepping stone speciation in Hawaii’s flycatchers: molecular divergence supports new island endemics within the elepaio

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

The elepaio (Chasiempis sandwichensis) is a monarch flycatcher endemic to the Hawaiian Islands of Kauai, Oahu, and Hawaii. Elepaio vary in morphology among and within islands, and five subspecies are currently recognized. We investigated phylogeography of elepaio using mitochondrial (ND2) and nuclear (LDH) markers and population structure within Hawaii using ND2 and microsatellites. Phylogenetic analyses revealed elepaio on each island formed reciprocally monophyletic groups, with Kauai ancestral to other elepaio. Sequence divergence in ND2 among islands (3.02–2.21%) was similar to that in other avian sibling species. Estimation of divergence times using relaxed molecular clock models indicated elepaio colonized Kauai 2.33 million years ago (95% CI 0.92–3.87 myr), Oahu 0.69 (0.29–1.19) myr ago, and Hawaii 0.49 (0.21–0.84) myr ago. LDH showed less variation than ND2 and was not phylogenetically informative. Analysis of molecular variance within Hawaii showed structure at ND2 (fixation index = 0.31), but microsatellites showed no population structure. Genetic, morphological, and behavioral evidence supports splitting elepaio into three species, one on each island, but does not support recognition of subspecies within Hawaii or other islands. Morphological variation in elepaio has evolved at small geographic scales within islands due to short dispersal distances and steep climatic gradients. Divergence has been limited by lack of dispersal barriers in the extensive forest that once covered each island, but anthropogenic habitat fragmentation and declines in elepaio population size are likely to decrease gene flow and accelerate differentiation, especially on Oahu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amadon D (1949) The seventy-five per cent rule for subspecies. Condor 51:250–258

    Article  Google Scholar 

  • American Ornithologists’ Union (1998) Check-list of North American Birds, 7th edn. American Ornithologists’ Union, Washington, DC

  • American Ornithologists’ Union (2000) Forty-second supplement to the American Ornithologists’ Union Check-list of North American birds. Auk 117:847–858

    Google Scholar 

  • Arbogast BS, Slowinski JB (1998) Pleistocene speciation and the mitochondrial DNA clock. Science 282:1955a

    Article  Google Scholar 

  • Avise JC (2004) Molecular markers, natural history, and evolution, 2nd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Avise JC, Zink RM (1988) Molecular genetic divergence between avian sibling species: king and clapper rails, long-billed and short-billed dowitchers, boat-tailed and great-tailed grackles, and tufted and black-crested titmice. Auk 105:516–528

    Google Scholar 

  • Badyaev AV, Hill GE (2003) Avian sexual dichromatism in relation to phylogeny and ecology. Annu Rev Ecol Syst 34:27–49

    Article  Google Scholar 

  • Baldwin BG (1997) Adaptive radiation of the Hawaiian Silversword alliance: congruence and conflict of phylogenetic evidence from molecular and non-molecular investigations. In: Givnish TJ, Sytsma KJ (eds) Molecular evolution and adaptive radiation. Cambridge University Press, New York, pp 104–128

    Google Scholar 

  • Bryan EH Jr, Greenway JC Jr (1944) Check-list of the birds of the Hawaiian Islands. Bull Mus Comp Zool 94:92–140

    Google Scholar 

  • Burgess SL, Fleischer RC (2006) Isolation and characterization of polymorphic microsatellite loci in the Hawaiian flycatcher, the elepaio (Chasiempis sandwichensis). Mol Ecol Notes 6:14–16

    Article  CAS  Google Scholar 

  • Burney DA, James HF, Burney LP et al (2001) Fossil evidence for a diverse biota from Kaua`i and its transformation since human arrival. Ecol Monogr 71:615–641

    Google Scholar 

  • Burtt EH, Ichida JM (2004) Gloger’s rule, feather-degrading bacteria, and color variation among song sparrows. Condor 106:681–686

    Article  Google Scholar 

  • Carson H (1987) Tracing ancestry with chromosomal sequences. Trends Ecol Evol 2:203–207

    Article  Google Scholar 

  • Case TJ, Taper ML (2000) Interspecific competition, environmental gradients, gene flow, and the coevolution of species borders. Am Nat 155:583–605

    Article  PubMed  Google Scholar 

  • Cibois A, Thibault J-C, Pasquet E (2004) Biogeography of eastern Polynesian monarchs (Pomarea): an endemic genus close to extinction. Condor 106:837–851

    Article  Google Scholar 

  • Cicero C (2004) Barriers to sympatry between avian sibling species (Paridae: Baeolophus) in local secondary contact. Evolution 58:1573–1587

    PubMed  Google Scholar 

  • Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659

    Article  CAS  PubMed  Google Scholar 

  • Conant S, Pratt HD, Shallenberger RJ (1998) Reflections on a 1975 expedition to the lost world of the Alaka`i and other notes on the natural history, systematics, and conservation of Kaua`i birds. Wilson Bull 110:1–22

    Google Scholar 

  • Cowie RH, Holland BS (2008) Molecular biogeography and diversification of the endemic terrestrial fauna on the Hawaiian Islands. Philos Trans R Soc B 363:3363–3376

    Article  Google Scholar 

  • Delaney KS, Wayne RK (2005) Adaptive units for conservation: population distinction and historic extinctions in the island scrub-jay. Conserv Biol 19:523–533

    Article  Google Scholar 

  • Drovetski SV, Zink RM, Rohwer S, Fadeev IV, Nesterov EV, Karagodin I, Koblik EA, Red’kin YA (2004) Complex biogeographic history of a Holarctic passerine. Proc R Soc Lond Ser B 271:545–551

    Article  Google Scholar 

  • Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis sampling trees. BMC Evol Biol 7:214

    Article  PubMed  Google Scholar 

  • Endler JA (1977) Geographic variation, speciation, and clines. Princeton University Press, Princeton

    Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin version 3.0—an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    CAS  PubMed  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes. doi:10.1111/j.1471-8286.2007.01758.x

  • Filardi CE, Moyle RG (2005) Single origin of a pan-Pacific bird group and upstream colonization of Australasia. Nature 438:216–219

    Article  CAS  PubMed  Google Scholar 

  • Filardi CE, Smith CE (2005) Molecular phylogenetics of monarch flycatchers (genus Monarcha) with emphasis on Solomon Island endemics. Mol Phylogenet Evol. doi:10.1016/j.ympev.2005.02.007

  • Filardi CE, Smith CE (2008) Social selection and geographic variation in two monarch flycatchers from the Solomon Islands. Condor 110:24–34

    Article  Google Scholar 

  • Fleischer RC, McIntosh CE (2001) Molecular systematics and biogeography of the Hawaiian avifauna. Stud Avian Biol 22:51–60

    Google Scholar 

  • Fleischer RC, McIntosh CE, Tarr CL (1998) Evolution on a volcanic conveyor belt: using phylogeographic reconstructions and K–Ar-based ages of the Hawaiian Islands to estimate molecular evolutionary rates. Mol Ecol 7:533–545

    Article  CAS  PubMed  Google Scholar 

  • Foster JT, Tweed EJ, Camp RJ, Woodworth BL, Adler CD, Telfer T (2004) Long-term population changes of native and introduced birds in the Alaka`i Swamp, Kaua`i. Conserv Biol 18:716–725

    Article  Google Scholar 

  • Foster JT, Woodworth BL, Eggert LE et al (2007) Genetic structure and evolved malaria resistance in Hawaiian honeycreepers. Mol Ecol 16:4738–4746

    Article  CAS  PubMed  Google Scholar 

  • Freed LA, Conant S, Fleischer RC (1987) Evolutionary ecology and radiation of Hawaiian passerine birds. Trends Ecol Evol 2:196–203

    Article  Google Scholar 

  • Friesen VL, Congdon BC, Kidd MG, Birt TP (1999) Polymerase chain reaction (PCR) primers for the amplification of five nuclear introns in vertebrates. Mol Ecol 8:2147–2149

    Article  CAS  PubMed  Google Scholar 

  • Friesen VL, Anderson DJ, Steeves TE, Jones H, Schreiber EA (2002) Molecular support for species status of the Nazca booby (Sula granti). Auk 119:820–826

    Article  Google Scholar 

  • Garcia-Moreno J (2004) Is there a universal mtDNA clock for birds? J Avian Biol 35:465–468

    Article  Google Scholar 

  • Givnish TJ, Millam KC, Mast AR et al (2008) Origin, adaptive radiation and diversification of the Hawaiian lobeliads (Asterales: Campanulaceae). Proc R Soc. doi:10.1098/rspb.2008.1204

  • Gorresen PM, Camp RJ, Pratt TK, Woodworth BL (2005) Status of forest birds in the central windward region of Hawai`i Island. U.S. Geological Survey, Biological Resources Discipline, Open-File Report 2005-1441, 85 pp

  • Gorresen PM, Camp RJ, Pratt TK, Woodworth BL (2006) Status of forest birds in the Ka`ū Region of Hawai`i Island: population distribution and trends. U.S. Geological Survey, Biological Resources Discipline, Open-File report

  • Grant PR (2001) Reconstructing the evolution of birds on islands: 100 years of research. Oikos 92:385–403

    Article  Google Scholar 

  • Grant PR, Grant BR (2007) How and why species multiply: the radiation of Darwin’s finches. Princeton University Press, Princeton

    Google Scholar 

  • Hackett J (1996) Molecular phylogenetics and biogeography of tanagers in the genus Ramphocelus (Aves). Mol Phylogen Evol 5:368–382

    Article  CAS  Google Scholar 

  • Haldane JBS (1956) The relation between density regulation and natural selection. Proc R Soc Lond B Biol Sci 145:306–308

    Article  CAS  PubMed  Google Scholar 

  • Henshaw HW (1902) The elepaio of Hawaii. Auk 19:221–232

    Google Scholar 

  • Ho SYW (2007) Calibrating molecular estimates of substitution rates and divergence times in birds. J Avian Biol 38:409–414

    Google Scholar 

  • Ho SYW, Phillips MJ, Cooper A, Drummond AJ (2005) Time dependency of molecular rate estimates and systematic overestimation of recent divergence times. Mol Biol Evol 22:1561–1568

    Article  CAS  PubMed  Google Scholar 

  • Holland BS, Hadfield MG (2004) Origin and diversification of the endemic Hawaiian tree snails (Achatinellinae: Achatinellidae) based on molecular evidence. Mol Phylogen Evol 32:588–600

    Article  CAS  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  • International Union for the Conservation of Nature (2007) 2007 IUCN Red list of threatened species. www.iucnredlist.org. Accessed 18 June 2008

  • Johnson NK, Cicero C (2002) The role of ecologic diversification in sibling speciation of Empidonax flycatchers (Tyrannidae): multigene evidence from mtDNA. Mol Ecol 11:2065–2081

    Article  CAS  PubMed  Google Scholar 

  • Kaneshiro KY, Boake CRB (1987) Sexual selection and speciation: issues raised by Hawaiian Drosophila. Trends Ecol Evol 2:207–212

    Article  Google Scholar 

  • Keller I, Largiadèr C (2003) Recent habitat fragmentation caused by major roads leads to reduction of gene flow and loss of genetic variability in ground beetles. Proc R Soc Lond Ser B 270:417–423

    Article  CAS  Google Scholar 

  • Kirch PV (1982) The impact of prehistoric Polynesians on the Hawaiian ecosystem. Pac Sci 36:1–14

    Google Scholar 

  • Lack D (1976) Island biology illustrated by the land birds of Jamaica. Blackwell, Oxford

    Google Scholar 

  • Lovette IJ (2004) Mitochondrial dating and mixed support for the “2%” rule in birds. Auk 121:1–6

    Article  Google Scholar 

  • Martinez-Cruz B, Godoy JA, Negro JJ (2007) Population fragmentation leads to spatial and temporal genetic structure in the endangered Spanish imperial eagle. Mol Ecol 16:477–486

    Article  CAS  PubMed  Google Scholar 

  • Mayr E (1982) Of what use are subspecies? Auk 99:593–595

    Google Scholar 

  • Mayr E, Diamond J (2001) The birds of northern Melanesia. Oxford University Press, Oxford

    Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Newton A (1892) Ornithology of the Sandwich Islands. Nature 45:465–469

    Article  Google Scholar 

  • Olson SL (1989) Two overlooked holotypes of the Hawaiian Flycatcher Chasiempis described by Leonhard Stejneger (Aves: Myiagrinae). Proc Biol Soc Washington 102:555–558

    Google Scholar 

  • Olson SL, James HF (1982) Prodromus of the fossil avifauna of the Hawaiian Islands. Smithson Contrib Zool 365:1–59

    Google Scholar 

  • Omland KE, Lanyon SM (2000) Reconstructing plumage evolution in orioles (Icterus): repeated convergence and reversal in patterns. Evolution 54:2119–2133

    CAS  PubMed  Google Scholar 

  • Patten MA, Unitt P (2002) Diagnosability versus mean differences of sage sparrow subspecies. Auk 119:26–35

    Article  Google Scholar 

  • Percy DM, Garver AM, Wagner WL et al (2008) Progressive island colonization and ancient origin of Hawaiian Metrosideros (Myrtaceae). Proc R Soc 275:1479–1490

    Article  CAS  Google Scholar 

  • Pereira SL, Baker AJ (2006) A molecular timescale for galliform birds accounting for uncertainty in time estimates and heterogeneity of rates of DNA substitutions across lineages and sites. Mol Phylogen Evol 38:499–509

    Article  CAS  Google Scholar 

  • Peterson AT (2006) Application of molecular clocks in ornithology revisited. J Avian Biol 37:541–544

    Article  Google Scholar 

  • Phillimore AB, Owens IPF (2006) Are subspecies useful in evolutionary and conservation biology. Proc R Soc Ser B 273:1049–1053

    Article  Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  • Pratt HD (1979) A new subspecies of the elepaio Chasiempis sandwichensis, from the island of Hawaii. Bull Brit Ornithol Club 99:105–108

    Google Scholar 

  • Pratt HD (1980) Intra-island variation in the `elepaio on the island of Hawaii. Condor 82:449–458

    Article  Google Scholar 

  • Pratt HD, Bruner PL, Berrett DG (1987) A field guide to the birds of Hawai`i and the tropical Pacific. Princeton University Press, Princeton

    Google Scholar 

  • Price JP, Clague DA (2002) How old is the Hawaiian biota? Geology and phylogeny suggest recent divergence. Proc R Soc B 269:2429–2435

    Article  PubMed  Google Scholar 

  • Rambaut A (2009) FigTree: tree figure drawing tool, v1.2.1. University of Edinburgh, UK

    Google Scholar 

  • Raymond M, Rousset F (1997) GENEPOP version 3.1b. An updated version of GENEPOP version 1.2: population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Roderick GK, Gillespie RG (1998) Speciation and phylogeography of Hawaiian terrestrial arthropods. Mol Ecol 7:519–531

    Article  CAS  PubMed  Google Scholar 

  • Rozas J, Sanchez-Delbarrio JC, Messeguer X et al (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  CAS  PubMed  Google Scholar 

  • Sclater PL (1885) On the muscicapine genus Chasiempis. Ibis 3:17–19

    Google Scholar 

  • Scott JM, Mountainspring S, Ramsey FL et al (1986) Forest bird communities of the Hawaiian islands: their dynamics, ecology, and conservation. Stud Avian Biol 9:1–431

    Google Scholar 

  • Scott JM, Conant S, van Riper C III (2001) Evolution, ecology, conservation, and management of Hawaiian birds: a vanishing avifauna. Stud Avian Biol 22:1–428

    Google Scholar 

  • Seutin G, White BN, Boag PT (1991) Preservation of avian blood and tissue samples for DNA analyses. Can J Zool 69:82–90

    Article  CAS  Google Scholar 

  • Simon C (1987) Hawaiian evolutionary biology: an introduction. Trends Ecol Evol 2:175–178

    Article  Google Scholar 

  • Sorenson MD, Quinn TW (1998) Numts: a challenge for avian systematics and population biology. Auk 115:214–221

    Google Scholar 

  • Stejneger L (1887) Birds of Kauai Island, Hawaiian Archipelago, collected by Mr. Valdemar Knudsen, with descriptions of new species. Proc United States Natl Mus 10:75–102

    Google Scholar 

  • Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (and other methods) 4.0 Beta for Macintosh. Sinnauer Associates, Sunderland

    Google Scholar 

  • Tajima F (1993) Simple methods for testing molecular clock hypothesis. Genetics 135:599–607

    CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Tarr CL, Fleischer RC (1993) Mitochondrial DNA variation and evolutionary relationships in the amakihi complex. Auk 110:825–831

    Google Scholar 

  • U.S. Fish and Wildlife Service (2000) Final rule to list as endangered the Oahu elepaio from the Hawaiian Islands and determination of whether designation of critical habitat is prudent. Federal Register 65:20760–20769

    Google Scholar 

  • U.S. Fish and Wildlife Service (2006) Final revised recovery plan for Hawaiian forest birds. U.S. Fish and Wildlife Service, Portland. 508 pp

  • Vandergast AG, Gillespie RG, Roderick GK (2004) Influence of volcanic activity on the population genetic structure of Hawaiian Tetragnatha spiders: fragmentation, rapid population growth and the potential for accelerated evolution. Mol Ecol 13:1729–1743

    Article  CAS  PubMed  Google Scholar 

  • VanderWerf EA (1998) Elepaio (Chasiempis sandwichensis). In: Poole A, Gill F (eds) The birds of North America. The Birds of North America Inc., Philadelphia, No. 344

  • VanderWerf EA (2001) Two-year delay in plumage maturation of male and female elepaio. Condor 103:756–766

    Article  Google Scholar 

  • VanderWerf EA (2004) Demography of Hawai`i `elepaio: variation with habitat disturbance and population density. Ecology 85:770–783

    Article  Google Scholar 

  • VanderWerf EA (2007) Biogeography of elepaio: evidence from inter-island song playbacks. Wilson J Ornithol 119:325–333

    Article  Google Scholar 

  • VanderWerf EA (2008) Sources of variation in survival, recruitment, and natal dispersal of the Hawaii elepaio. Condor 110:241–250

    Article  Google Scholar 

  • VanderWerf EA (2009) Importance of nest predation by alien rodents and avian poxvirus in conservation of Oahu elepaio. J Wildl Manag 73:737–746

    Article  Google Scholar 

  • VanderWerf EA, Freed LA (2003) Elepaio subadult plumages reduce aggression through graded status signaling, not mimicry. J Field Ornithol 74:406–415

    Google Scholar 

  • VanderWerf EA, Smith DG (2002) Effects of alien rodent control on demography of the O`ahu `elepaio, an endangered Hawaiian forest bird. Pacific Conserv Biol 8:73–81

    Google Scholar 

  • VanderWerf EA, Rohrer JL, Smith DG et al (2001) Current distribution and abundance of the Oahu elepaio. Wilson Bull 113:10–16

    Article  Google Scholar 

  • VanderWerf EA, Burt MD, Rohrer JL et al (2006) Distribution and prevalence of mosquito-borne diseases in O`ahu `elepaio. Condor 108:770–777

    Article  Google Scholar 

  • Wagner WL, Funk VA (eds) (1995) Hawaiian biogeography: evolution on a hot spot archipelago. Smithsonian Institution Press, Washington, DC

  • Wilson SB (1891) On the muscicapine genus Chasiempis, with a description of a new species. Proc Zool Soc Lond 1891:164–166

    Google Scholar 

  • Xia X, Xie Z (2001) DAMBE: software package for data analysis and molecular biology and evolution. J Heredity 92:371–373

    Article  CAS  Google Scholar 

  • Zink RM (2004) The role of subspecies in obscuring avian biological diversity and misleading conservation policy. Proc R Soc B 271:561–564

    Article  PubMed  Google Scholar 

  • Zink RM, Barrowclough GF (2008) Mitochondrial DNA under siege avian phylogeography. Mol Ecol 17:2107–2121

    Article  CAS  PubMed  Google Scholar 

  • Zink RM, Remsen JV Jr (1986) Evolutionary processes and patterns of geographic variation in birds. Curr Ornithol 4:1–69

    Google Scholar 

Download references

Acknowledgments

For assistance in mist-netting elepaio, we thank Joby Rohrer, Matthew Burt, Kapua Kawelo, John Polhemus, Stephen Mosher, Phil Taylor, Keith Swindle, Dan Sailer, Ethan Shiinoki, Amy Tsuneyoshi, Marcos Gorresen, Pauline Roberts, Jeremy Russell, and Lucas Behnke. Permits to capture elepaio and collect blood samples were provided by the U.S. Fish and Wildlife Service and the Hawaii Division of Forestry and Wildlife. Access was provided by the U.S. Fish and Wildlife Service, the Hawaii Natural Area Reserves System, the Hawaii Division of Forestry and Wildlife, The Nature Conservancy of Hawaii, the U.S. Army, the Damon Estate, and the City and County of Honolulu Board of Water Supply. Permission to capture and collect blood samples from the Tinian monarch was provided by the Commonwealth of the Northern Marianas Division of Fish and Wildlife. We thank Catherine Lippe and Joanna Kobayashi for lab assistance, Chris Filardi for discussion and advice, and Ken Hayes for technical assistance and comments on the manuscript. This work was supported in part by the Hawaii Division of Forestry and Wildlife, the U.S. Fish and Wildlife Service, and the University of Hawaii Ecology, Evolution, and Conservation Biology Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric A. VanderWerf.

Appendix

Appendix

See Tables 5 and 6.

Table 5 Number of genetic samples collected from elepaio at locations on Kauai, Oahu, and Hawaii, and subspecies at each location based on Pratt (Pratt 1980)
Table 6 Elepaio haplotype distribution list for (a) ND2 and (b) LDH

Rights and permissions

Reprints and permissions

About this article

Cite this article

VanderWerf, E.A., Young, L.C., Yeung, N.W. et al. Stepping stone speciation in Hawaii’s flycatchers: molecular divergence supports new island endemics within the elepaio. Conserv Genet 11, 1283–1298 (2010). https://doi.org/10.1007/s10592-009-9958-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-009-9958-1

Keywords

Navigation