Skip to main content

Advertisement

Log in

Overlapping biomarkers, pathways, processes and syndromes in lymphatic development, growth and neoplasia

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Recent discoveries in molecular lymphology, developmental biology, and tumor biology in the context of long-standing concepts and observations on development, growth, and neoplasia implicate overlapping pathways, processes, and clinical manifestations in developmental disorders and cancer metastasis. Highlighted in this review are some of what is known (and speculated) about the genes, proteins, and signaling pathways and processes involved in lymphatic/blood vascular development in comparison to those involved in cancer progression and spread. Clues and conundra from clinical disorders that mix these processes and mute them, including embryonic rests, multicentric nests of displaced cells, uncontrolled/invasive “benign” proliferation and lymphogenous/hematogenous “spread”, represent a fine line between normal development and growth, dysplasia, benign and malignant neoplasia, and “metastasis”. Improved understanding of these normal and pathologic processes and their underlying pathomechanisms, e.g., stem cell origin and bidirectional epithelial-mesenchymal transition, could lead to more successful approaches in classification, treatment, and even prevention of cancer and a whole host of other diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Weinberg RA (2007) Moving out: invasion and metastasis. In: The biology of cancer. Garland Science, Inc., New York, p 587

  2. Witte MH, Witte CL (1999) What we don’t know about cancer. Epilogue. In: DenOtter W, Root-Bernstein R, Koten J-W (eds) What is cancer? Theories on carcinogenesis. Anticancer Res 19:4919–4934

  3. Witte M, Crown P, Bernas M, Garcia F (2008) “Ignoramics” in medical and pre-medical education. J Inv Med 56:897–901

    Google Scholar 

  4. Witte MH, Crown P, Bernas M, Witte CL (2008) Lessons learned from ignorance: the curriculum on medical (and other) ignorance. In: Vitek W, Jackson W (eds) The virtues of ignorance: complexity, sustainability, and the limits of knowledge. The University Press of Kentucky, Lexington, pp 251–272

    Google Scholar 

  5. McCormack FX, Inoue Y, Moss J, Singer LG, Strange C, Nakata K, Barker AF, Chapman JT, Brantly ML, Stocks JM, Brown KK, Lynch JP III, Goldberg HJ, Young LR, Kinder BW, Downey GP, Sullivan EJ, Colby TV, McKay RT, Cohen MM, Korbee L, Taveira-DaSilva AM, Lee H-S, Krischer JP, Trapnell BC (2011) Efficacy and safety of sirolimus in lymphangioleiomyomatosis. N Engl J Med 364:1595–1606

    Article  PubMed  CAS  Google Scholar 

  6. McCormack FX [quoted in LAM and cancer] (2010) The LAM foundation: responses to recent questions

  7. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  PubMed  CAS  Google Scholar 

  8. Hanahan D (2010) NCRI conference: the hallmarks of cancer. NCRI Cancer Conference Newsletter. Questions #7–10

  9. Witte MH, Dellinger M, Bernas M, Witte CL (2009) Heme/lymphvasculogenesis, heme/lymphangiogenesis, hem/lymphangiotumorigenesis, and tumor hem/lymphangiogenesis: need for a terminology adjustment. In: Leong SPL (ed) Cancer metastasis: from local proliferation to distant sites through the lymphovascular system. Humana Press/Springer, New York, pp 77–92

    Google Scholar 

  10. Witte MH, Witte CL (1986) Lymphangiogenesis and lymphologic syndromes. Lymphology 19:21–28

    PubMed  CAS  Google Scholar 

  11. Witte MH, Witte CL (1987) Lymphatics and blood vessels, lymphangiogenesis and hemangiogenesis: from cell biology to clinical medicine. Lymphology 20:171–178

    PubMed  CAS  Google Scholar 

  12. Witte MH, Way DL, Witte CL, Bernas M (1997) Lymphangiogenesis: mechanisms, significance and clinical implications. In: Rosen EM, Goldberg ID (eds) Regulation of angiogenesis. Birkhäuser Verlag, Basel/Switzerland, pp 65–112

    Chapter  Google Scholar 

  13. Northup KA, Witte MH, Witte CL (2003) Syndromic classification of hereditary lymphedema. Lymphology 36:162–189

    PubMed  CAS  Google Scholar 

  14. Witte MH, Bernas M, Martin C, Witte CL (2001) Lymphangiogenesis and lymphangiodysplasias: from molecular to clinical lymphology. In: Wilting J (guest ed) The biology of lymphangiogenesis. Microscopy Research and Techniques 55:122–145

  15. Witte MH, Jones K, Wilting J, Dictor M, Selg M, McHale N, Gershenwald JE, Jackson DG (2006) Structure-function relationships in the lymphatic system and implications for cancer biology. Cancer Metastasis Rev 25:159–184

    Article  PubMed  Google Scholar 

  16. Witte M, Dellinger M, McDonald D, Nathanson D, Boccardo F, Campisi C, Sleeman J, Gershenwald J (2011) Lymphangiogenesis/hemangiogenesis: potential targets for therapy. J Surg Oncol 103:489–500

    Article  PubMed  Google Scholar 

  17. Mann T (1996) Magic mountain. Alfred A Knopf Publishers (a division of Random House), New York (translated by Woods JE)

  18. Dvorak HF, Weaver VM, Tlsty TD, Bergers G (2011) Tumor microenvironment and progression. J Surg Oncol 103:468–474. doi:10.1002/jso.21709

    Article  PubMed  CAS  Google Scholar 

  19. Jones KA, Witte MH (2007) Cancer and the lymphatic system. Lymphology 39(Suppl):136–140

    Google Scholar 

  20. Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, Martinez P, Matthews N, Stewart A, Tarpey P, Varela I, Phillimore B, Begum S, McDonald NQ, Butler A, Jones D, Raine K, Latimer C, Santos CR, Nohadani M, Eklund AC, Spencer-Dene B, Clark G, Pickering L, Stamp G, Gore M, Szallasi Z, Downward J, Futreal PA, Swanton C (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366:883–892

    Article  PubMed  CAS  Google Scholar 

  21. Becker F, Witte MH, Tesler M, Dumont AE (1965) Whipple’s disease: demonstration of anatomic alterations before clinical onset of symptoms. J Am Med Assoc 194:559–561

    Article  CAS  Google Scholar 

  22. Tesler M, Witte MH, Becker F, Dumont AE (1965) Whipple’s disease: identification of circulation Whipple cells in thoracic duct lymph. Gastroenterology 48:110–117

    PubMed  CAS  Google Scholar 

  23. Maiwald M, von Herbay A, Relman DA (2010) Whipple’s Disease. In: Feldman M, Scharschmidt BF, Sleisenger MH (eds) Sleisenger and Fordtran’s gastrointestinaal and liver disease, 9th edn. Saunders, Philadelphia, pp 1933–1842

  24. Bowman C, Witte MH, Witte CL, Way D, Nagle R, Copeland J, Daschbach C (1984) Cystic hygroma reconsidered: hamartoma or neoplasm? Primary culture of an endothelial cell line from a massive cervicomediastinal cystic hygroma with bony lymphangiomatosis. Lymphology 17:15–22

    PubMed  CAS  Google Scholar 

  25. Haferkamp O (1961) Über das syndrom: generalisierte maligne hämangiomatosis mit osteolysis. Zeitschrift für Krebsforschung 64(5):418–426

    Article  PubMed  CAS  Google Scholar 

  26. Witte MH, Stuntz M, Witte CL (1989) Kaposi’s sarcoma: a lymphologic perspective. Int J Dermatol 28:561–570

    Article  PubMed  CAS  Google Scholar 

  27. Mulliken JB, Young AE (1988) Vascular birthmarks: hemangiomas and malformations. WB Saunders, Philadelphia, p 465

    Google Scholar 

  28. Lewis R, Ketcham A (1973) Maffucci’s syndrome: functional and neoplastic significance. J Bone Joint Surg 55A:1465–1479

    Google Scholar 

  29. Papendieck CM (1992) Atlas color. Temas de Angiologia pediatrica. Pediatric angiology subjects. Medica Panamericana, Buenos Aires

  30. Maffucci AD (1881) Un caso di encondroma e angioma multiplo. Mov Médico Chir 3:399

    Google Scholar 

  31. Greenburg G, Hay ED (1986) Cytodifferentiation and tissue phenotype change during transformation of embryonic lens epithelium to mesenchyme-like cells in vitro. Dev Biol 115:363–379

    Article  PubMed  CAS  Google Scholar 

  32. Thiery JP, Acloque H, Huang RYJ, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139:871–890

    Article  PubMed  CAS  Google Scholar 

  33. Klymkowsky MW, Savagner P (2009) Epithelial-mesenchymal transition: a cancer researcher’s conceptual friend and foe. Am J Pathol 174:1588–1593

    Article  PubMed  CAS  Google Scholar 

  34. Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119:1420–1428

    Article  PubMed  CAS  Google Scholar 

  35. Chaffer CL, Weinberg RA (2011) A perspective on cancer cell metastasis. Science 331:1559–1564

    Article  PubMed  CAS  Google Scholar 

  36. Eccleston A, Dhand R (eds) (2006) Insight: signalling in cancer. Nature 441 (supplement):423–457

  37. Gavert N, Ben Ze’ev A (2010) Cancer’s conversions: a developmental transition may be a useful model for tumor progression. Scientist 24:63–66

    Google Scholar 

  38. Hirschi KK (2011) Vascular precursors: origin, regulation and function. Arterioscler Thromb Vasc Biol 30:1078–1079

    Article  Google Scholar 

  39. Franses JW, Baker AB, Chitalia VC, Edelman ER (2011) Stromal endothelial cell directly influence cancer progression. Sci Transl Med 3:66ra5

    Google Scholar 

  40. Omenetti A, Bass LM, Anders RA, Clemente MG, Francis H, Guy CD, McCall S, Choi SS, Alpini G, Schwarz KB, Diehl AM, Whitington PF (2011) Hedgehog activity, epithelial-mesenchymal transitions, and biliary dysmorphogenesis in biliary atresia. Hepatology 53:1246–1258

    Article  PubMed  CAS  Google Scholar 

  41. Larue L, Bellacosa A (2005) Epithelial–mesenchymal transition in development and cancer: role of phosphatidylinositol 3′ kinase/AKT pathways. Oncogene 24:7443–7454

    Article  PubMed  CAS  Google Scholar 

  42. Tammela T, Alitalo K (2010) Lymphangiogenesis: molecular mechanisms and future promise. Cell 140:460–476

    Article  PubMed  CAS  Google Scholar 

  43. McCarthy N (2010) Signalling: regulation and crosstalk. Nat Rev 10:386–387

    CAS  Google Scholar 

  44. VanHook AM (2011) Lipids influence hippo signaling. Sci Signal 4:ec110

    Google Scholar 

  45. Heallen T, Zhang M, Wang J, Bonilla-Claudio M, Klysik E, Johnson RL, Martin JF (2011) Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science 332:458–461

    Article  PubMed  CAS  Google Scholar 

  46. Kanady JD, Dellinger MT, Munger SJ, Witte MH, Simon AM (2011) Connexin37 and Connexin43 deficiencies in mice disrupt lymphatic valve development and result in lymphatic disorders including lymphedema and chylothorax. Dev Biol 354:253–266

    Article  PubMed  CAS  Google Scholar 

  47. Kanady JD, Simon AM (2011) Lymphatic communication: connexin junction, what’s your function? Lymphology 22:95–102

    Google Scholar 

  48. Sabine A, Agalarov Y, Maby-El Hajjami H, Jaquet M, Hägerling R, Pollmann C, Bebber D, Pfenniger A, Miura N, Dormond O, Calmes J-M, Adams RH, Mäkinen T, Kiefer F, Kwak BR, Petrova TV (2012) Mechanotransduction, PROX1, and FOXC2 cooperate to control connexin37 and calcineurin during lymphatic-valve formation. Dev Cell 22:430–445

    Article  PubMed  CAS  Google Scholar 

  49. Saito T, Krutovskikh V, Marion M-J, Ishak KG, Bennet WP, Yamasaki H (2000) Human hemangiosarcomas have a common polymorphism but no mutations in the connexin37 gene. Int J Cancer 86:67–70

    Article  PubMed  CAS  Google Scholar 

  50. Morel S, Burnier L, Roatti A, Chassot A, Roth I, Sutter E, Galan K, Pfenniger A, Chason M, Kwak BR (2010) Unexpected role for the human Cx37 C1019T polymorphism in tumour cell proliferation. Carcinogenesis 31:1922–1931

    Article  PubMed  CAS  Google Scholar 

  51. Mani SA, Yang J, Brooks M, Schwaninger G, Zhou A, Miura N, Kutok JL, Hartwell K, Richardson AL, Weinberg RA (2007) Mesenchyme Forkhead 1 (FOXC2) plays a key role in metastasis and is associated with aggressive basal-like breast cancers. PNAS 104:10069–10074

    Article  PubMed  CAS  Google Scholar 

  52. Gale NW, Thurston G, Hackett SF, Renard R, Wang Q, McClain J, Martin C, Witte C C, Witte MH, Jackson D, Suri C, Campochiaro PA, Wiegand SJ, Yancopoulos GD (2002) Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by angiopoietin-1. Dev Cell 3:411–423

    Article  PubMed  CAS  Google Scholar 

  53. Dellinger M, Hunter R, Bernas M, Gale N, Yancopoulos G, Erickson R, Witte M (2008) Defective remodeling and maturation of the lymphatic vasculature in angiopoietin-2 deficient mice. Dev Biol 319:309–320

    Article  PubMed  CAS  Google Scholar 

  54. Fang J, Dagenais SL, Erickson RP, Arlt MF, Glynn MW, Gorski JL, Seaver LH, Glover TW (2000) Mutations in FOXC2 (MFH-1), a forkhead family transcription factor, are responsible for the hereditary lymphedema-distichiasis syndrome. Am J Hum Genet 67:1382–1388

    Article  PubMed  CAS  Google Scholar 

  55. Erickson R, Dagenais S, Caulder M, Downs C, Jones M, Kerstjens-Frederikse M, Lidral A, McDonald M, Nelson C, Witte M, Glover T (2001) Clinical heterogeneity in lymphedema-distichiasis syndrome with FOXC2 gene mutations. J Med Genet 38:761–766

    Article  PubMed  CAS  Google Scholar 

  56. Witte M, Erickson R, Khalil M, Dellinger M, Bernas M, Grogan T, Nitta H, Feng J, Duggan D, Witte C (2009) Lymphedema-distichiasis syndrome without FOXC2 mutation: evidence for chromosome 16 duplication upstream of FOXC2. Lymphology 42:152–160

    PubMed  CAS  Google Scholar 

  57. Kriederman BM, Myloyde TL, Witte MH, Dagenais SL, Witte CL, Rennels M, Bernas MJ, Lynch MT, Erickson RP, Caulder MS, Miura N, Jackson D, Brooks BP, Glover TW (2003) Foxc2 haploinsufficient mice are a model for human autosomal dominant lymphedema-distichiasis syndrome. Hum Mol Gen 12:1179–1185

    Article  PubMed  CAS  Google Scholar 

  58. Petrova TV, Karpanen T, Norrmen C, Mellor R, Tamakoshi T, Finegold D, Ferrell R, Kerjaschki D, Mortimer P, Yla-Herttuala S, Miura N, Alitalo K (2004) Defective valves and abnormal mural cell recruitment underlie lymphatic vascular failure in lymphedema distichiasis. Nature Med 10:974–981

    Article  PubMed  CAS  Google Scholar 

  59. Cherington D, Daley SK, Kurtzman D, Carrasco A, Bernas M, Witte MH (2010) Lymphatic dysfunction and tumor growth and spread in a murine model: a pilot study. Lymphology 43(Suppl):99–100

    Google Scholar 

  60. Daley SK, Bastidas E, Washington J, Bernas MJ, Witte MH (2012) Foxc2 deficiency and melanoma spread in a mouse model. Lymphology 45(suppl):in press

  61. Ferrell RE, Baty CJ, Kimak MA, Karlsson JM, Lawrence EC, Franke-Snyder M, Meriney SD, Feingold E, Finegold DN (2010) GJC2 missense mutations cause human lymphedema. Am J Hum Genet 86:943–948

    Article  PubMed  CAS  Google Scholar 

  62. Ostergaard P, Simpson MA, Brice G, Mansour S, Connell FC, Onoufriadis A, Child AH, Hwang J, Kalidas K, Mortimer PS, Trembath R, Jeffery S (2011) Rapid identification of mutations in GJC2 in primary lymphoedema using whole exome sequencing combined with linkage analysis with delineation of the phenotype. J Med Genet 48:251–255

    Article  PubMed  CAS  Google Scholar 

  63. Jones KA, Witte MH (2011) Hereditary and familial lymphedema syndromes. In: Lee BB, Bergan J, Rockson SG (eds) Lymphedema: A concise compendium of theory and practice. Springer, London, pp 29–39

    Google Scholar 

  64. Varmus H, Harlow E (2012) Provocative questions in cancer research. Nature 481:436–437

    Article  PubMed  CAS  Google Scholar 

  65. Yoffey J, Courtice F (1970) Lymphatics, lymph and the lymphomyeloid complex. Academic Press, London

    Google Scholar 

  66. Luangdilok S, Box C, Harrington K, Rhys-Evans P, Eccles S (2011) MAPK and PI3 K signalling differentially regulate angiogenic and lymphangiogenic cytokine secretion in squamous cell carcinoma of the head and neck. Eur J Cancer 47:520–529

    Article  PubMed  CAS  Google Scholar 

  67. Kobayashi S, Kishimoto T, Kamata S, Otsuka M, Miyazaki M, Ishikura H (2007) Rapamycin, a specific inhibitor of the mammalian target of rapamycin, suppresses lymphangiogenesis and lymphatic metastasis. Cancer Sci 98:726–733

    Article  PubMed  CAS  Google Scholar 

  68. Tang Y, Zhang D, Fallavollita L, Brodt P (2003) Vascular endothelial growth factor C expression and lymph node metastasis are regulated by the type I insulin-like growth factor receptor. Cancer Res 63:1166–1171

    PubMed  CAS  Google Scholar 

  69. Ichise T, Yoshida N, Ichise H (2010) H-, N- and Kras cooperatively regulate lymphatic vessel growth by modulating VEGFR3 expression in lymphatic endothelial cells in mice. Development 137:1003–1013

    Article  PubMed  CAS  Google Scholar 

  70. Zhou F, Chang Z, Zhang L, Hong YK, Shen B, Wang B, Zhang F, Lu G, Tvorogov D, Alitalo K, Hemmings BA, Yang Z, He Y (2010) Akt/protein kinase B is required for lymphatic network formation, remodeling, and valve development. Am J Pathol 177:2124–2133

    Article  PubMed  CAS  Google Scholar 

  71. Jones D, Xu Z, Zhang H, He Y, Kluger MS, Chen H, Min W (2010) Functional analyses of the bone marrow kinase in the X chromosome in vascular endothelial growth factor-induced lymphangiogenesis. Arterioscler Thromb Vasc Biol 30:2553–2561

    Article  PubMed  CAS  Google Scholar 

  72. Kodera Y, Katanasaka Y, Kitamura Y, Tsuda H, Nishio K, Tamura T, Koizumi F (2011) Sunitinib inhibits lymphatic endothelial cell functions and lymph node metastasis in a breast cancer model through inhibition of vascular endothelial growth factor receptor 3. Breast Cancer Res 13:R66

    Article  PubMed  CAS  Google Scholar 

  73. Goldman J, Rutkowski JM, Shields JD, Pasquier MC, Cui Y, Schmökel HG, Willey S, Hicklin DJ, Pytowski B, Swartz MA (2007) Cooperative and redundant roles of VEGFR-2 and VEGFR-3 signaling in adult lymphangiogenesis. FASEB J 21:1003–1012

    Article  PubMed  CAS  Google Scholar 

  74. Hirakawa S, Kodama S, Kunstfeld R, Kajiya K, Brown LF, Detmar M (2005) VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J Exp Med 201:1089–1099

    Article  PubMed  CAS  Google Scholar 

  75. Veikkola T, Lohela M, Ikenberg K, Makinen T, Korff T, Saaristo A, Petrova T, Jeltsch M, Augustin HG, Alitalo K (2003) Intrinsic versus microenvironmental regulation of lymphatic endothelial cell phenotype and function. FASEB J 17:2006–2013

    Article  PubMed  CAS  Google Scholar 

  76. Shin JW, Huggenberger R, Detmar M (2008) Transcriptional profiling of VEGF-A and VEGF-C target genes in lymphatic endothelium reveals endothelial-specific molecule-1 as a novel mediator of lymphangiogenesis. Blood 112:2318–2326

    Article  PubMed  CAS  Google Scholar 

  77. Dellinger MT, Brekken RA (2011) Phosphorylation of Akt and ERK1/2 is required for VEGF-A/VEGFR2-induced proliferation and migration of lymphatic endothelium. PLoS ONE 6:e28947

    Article  PubMed  CAS  Google Scholar 

  78. Bilanges B, Vanhaesebroeck B (2010) A new tool to dissect the function of p70 S6 kinase. Biochem J 431:e1–e3

    Article  PubMed  CAS  Google Scholar 

  79. Mouta-Bellum C, Kirov A, Miceli-Libby L, Mancini ML, Petrova TV, Liaw L, Prudovsky I, Thorpe PE, Miura N, Cantley LC, Alitalo K, Fruman DA, Vary CPH (2009) Organ-specific lymphangiectasia, arrested lymphatic sprouting, and maturation defects resulting from gene-targeting of the PI3K regulatory isoforms p85alpha, p55alpha, and p50alpha. Dev Dyn 238:2670–2679

    Article  PubMed  CAS  Google Scholar 

  80. Gupta S, Ramjaun AR, Haiko P, Wang Y, Warne PH, Nicke B, Nye E, Stamp G, Alitalo K, Downward J (2007) Binding of ras to phosphoinositide 3-kinase p110alpha is required for ras-driven tumorigenesis in mice. Cell 129:957–968

    Article  PubMed  CAS  Google Scholar 

  81. Lee BH, Kim JM, Jin HY, Kim GH, Choi JH, Yoo HW (2011) Spectrum of mutations in Noonan syndrome and their correlation with phenotypes. J Pediatr 159:1029–1035

    Article  PubMed  Google Scholar 

  82. Witt DR, Hoyme HE, Zonana J, Manchester DK, Fryns JP, Stevenson JG, Curry CJ, Hall JG (1987) Lymphedema in Noonan syndrome: clues to pathogenesis and prenatal diagnosis and review of the literature. Am J Med Genet 27:841–856

    Article  PubMed  CAS  Google Scholar 

  83. Taniguchi K, Kohno R, Ayada T, Kato R, Ichiyama K, Morisada T, Oike Y, Yonemitsu Y, Maehara Y, Yoshimura A (2007) Spreds are essential for embryonic lymphangiogenesis by regulating vascular endothelial growth factor receptor 3 signaling. Mol Cell Biol 27:4541–4550

    Article  PubMed  CAS  Google Scholar 

  84. Huber S, Bruns CJ, Schmid G, Hermann PC, Conrad C, Niess H, Huss R, Graeb C, Jauch K-W, Heeschen C, Gubal M (2007) Inhibition of the mammalian target of rapamycin impedes lymphangiogenesis. Kidney Int 71:771–777

    Article  PubMed  CAS  Google Scholar 

  85. Aboujaoude W, Milgrom ML, Govani MV (2004) Lymphedema associated with sirolimus in renal transplant recipients. Transplantation 77:1094–1096

    Article  PubMed  Google Scholar 

  86. Al-Otaibi T, Ahamed N, Nampoory MR, Al-Kandari N, Nair P, Hallm MA, Said T, Samhan M, Al-Mousawi M (2007) Lymphedema: an unusual complication of sirolimus therapy. Transplant Proc 39:1207–1210

    Article  PubMed  CAS  Google Scholar 

  87. De Bartolomeis C, Collini A, Rumberger B, Barni R, Ruggieri G, Bernini M, Carmellini M (2008) Generalized lymphedema in a sirolimus-treated renal transplant patient. Clin Transplant 22:254–257

    Article  PubMed  Google Scholar 

  88. Desai N, Heenan S, Mortimer PS (2009) Sirolimus-associated lymphoedema: eight new cases and a proposed mechanism. Br J Dermatol 160:1322–1326

    Article  PubMed  CAS  Google Scholar 

  89. Romagnoli J, Citterio F, Nanni G, Tondolo V, Castagneto M (2005) Severe limb lymphedema in sirolimus-treated patients. Transplant Proc 37:834–836

    Article  PubMed  CAS  Google Scholar 

  90. van Onna M, Geerts A, Van Vlierberghe H, Berrevoet F, de Hemptinne B, Troisi R, Colle I (2007) One-sided limb lymphedema in a liver transplant recipient receiving sirolimus. Acta Gastroenterol Belg 70:357–359

    PubMed  Google Scholar 

  91. Papendieck CM (2006) Lymphedema-angiodysplasia syndromes. In: Foldi M, Foldi E (eds) Foldi’s textbook of lymphology. 2nd edn. Mosby Elsevier, St. Louis, pp 513–518

  92. Papendieck CM (1996) Lymphangioadenodysplasias (lymphangionodaldysplasias) in pediatrics-LAAD. Lymphology 29(suppl):27–29

    Google Scholar 

  93. Hennekam R (2000) Syndromic lymphatic maldevelopment. In: Witte M (ed) Conquering lymphatic disease: setting the research agenda. University of Arizona, pp 70–73

  94. Papendieck CM (2003) Linfedema en pediatria. Clasificacion y etiopatogenia. Rev Hosp Niños Baires 45(201):14–22

    Google Scholar 

  95. Wiedemann HR, Burgio GR, Aldenhoff P, Kunze J, Kaufmann HJ, Schirg E (1983) The proteus syndrome. Partial gigantism of the hands and feet, nevi, hemihypertrophy, subcutaneous tumors, macrocephaly or other skull anomalies and possible accelerated growth and visceral affection. Eur J Pediatr 140:5–12

    Article  PubMed  CAS  Google Scholar 

  96. Papendieck CM (1998) El síndrome proteo en pediatria. Prensa Medica Argent 85:348–351

    Google Scholar 

  97. Belov S (1990) Classification of congenital vascular defects. Int Angiol 9:141–146

    PubMed  CAS  Google Scholar 

  98. Klippel W, Trenaunay P (1900) Du naevus variqueux osteo-hypertrophique. Arch Gen Med 185:641–672

    Google Scholar 

  99. Kasabach HH, Merritt KK (1940) Capillary hemangioma with extensive purpura. Am J Dis Child 59:1063–1070

    Google Scholar 

  100. Mulliken JB (1988) Diagnosis and natural history of hemangiomas. In: Mulliken JB, Young AE (eds) Vascular birthmarks: hemangiomas and malformations. WB Saunders, Philadelphia, p 41

    Google Scholar 

  101. Parkes Weber F (1918) Haemangiectactic hypertrophy of limbs—congenital phlebarteriectasis and so-called varicose veins. Br J Dis Child 19:13–15

    Google Scholar 

  102. Servelle M (1978) Pathologie vasculaire. 2. Les affections veineuses. Masson, Paris

  103. Bean WB (1958) Dyschondroplasia and hemangiomata. Arch Int Med 102:544–550

    Article  CAS  Google Scholar 

  104. Salgado EG, López JBO (2008) Síndrome de Bean. Patología potencialmente fatal de facil diagnostico. Cir Plast 18:28–31

    Google Scholar 

  105. Brunner U (1969) Das lymhodem der unteren extremitaten. Aktuelle Problema der Angiologie. H. Huber Verlag, Bern

    Google Scholar 

  106. Gorham WL, Stout PA (1955) Massive osteolysis (acute spontaneous absorption of bone, phantom bone, disappearing bone). J Bone Joint Surg 37:985–1004

    PubMed  Google Scholar 

  107. Papendieck CM (2000) Síndrome de gorham con reflujo de quilo. Rev Argent Cirugía 79:7–9

    Google Scholar 

  108. Papendieck CM (2001) Lymphangiomatosis in pediatrics. Eur J Lymphol 33:1–5

    Google Scholar 

  109. Alemar AI (2009) Characterization of a distinct syndrome that associates complex truncal overgrowth, vascular and acreal anomalies. A descriptive study of 18 CLOVES syndromes. Clin Dysmorphol 18:1–7

    Article  Google Scholar 

  110. Clark MT, Brooks EL, Chong W, Pappas C, Fahey M (2008) Cobb syndrome: a case report and systemic review of the literature. Pediatr Neurol 39:423–425

    Article  PubMed  Google Scholar 

  111. Boon LM, Mulliken JB, Enjolras O, Vikkula M (2004) Glomovenous malformation (glomangioma) and venous malformation: distinct clinicopathologic and genetic entities. Arch Dermatol 140:971–976

    Article  PubMed  Google Scholar 

  112. Cheng EB, Enzinger FM (1973) Benign lipoblastomatosis. An analysis of 35 cases. Cancer 32:482–492

    Article  Google Scholar 

  113. Papendieck CM (2003) Lipoblastoma-lipoblastomatosis associated with unilateral limb hypertrophy. A case report in a newborn. Lymphology 36:69–73

    PubMed  CAS  Google Scholar 

  114. Campisi C, Boccardo F, Witte M, Bernas M (2011) Lymphatic surgery and surgery of lymphatic disorders. In: Dieter RS, Dieter RA Jr, Dieter RA III (eds) Venous and lymphatic diseases. McGraw Hill, New York, pp 607–629

    Google Scholar 

  115. Azzali G (2007) Tumor cell transendothelial passage in the absorbing lymphatic vessel of transgenic adenocarcinoma mouse prostate. Am J Pathol 170:334–346

    Article  PubMed  CAS  Google Scholar 

  116. Witte MH, Witte CL (1997) On tumor (and other) lymphangiogenesis. Lymphology 30:1–2

    PubMed  CAS  Google Scholar 

  117. Jain RK, Fenton BT (2002) Intratumoral lymphatic vessels: A case of mistaken identity or malfunction? J Nat Cancer Inst 94:417–421

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

MTD received funding from a Department of Defense Breast Cancer Research Postdoctoral fellowship (W81XWH-10-1-0052). MHW, CP, FB thank the International Society of Lymphology whose practitioners and basic scientists around the world care for and explore the basis for these rare and more common clinical disorders.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marlys H. Witte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Witte, M.H., Dellinger, M.T., Papendieck, C.M. et al. Overlapping biomarkers, pathways, processes and syndromes in lymphatic development, growth and neoplasia. Clin Exp Metastasis 29, 707–727 (2012). https://doi.org/10.1007/s10585-012-9493-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-012-9493-1

Keywords

Navigation