Skip to main content

Advertisement

Log in

Establishment and quantitative imaging of a 3D lung organotypic model of mammary tumor outgrowth

  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

The lung is the second most common site of metastatic spread in breast cancer and experimental evidence has been provided in many systems for the importance of an organ-specific microenvironment in the development of metastasis. To better understand the interaction between tumor and host cells in this important secondary site, we have developed a 3D in vitro organotypic model of breast tumor metastatic growth in the lung. In our model, cells isolated from mouse lungs are placed in a collagen sponge to serve as a scaffold and co-cultured with a green fluorescent protein-labeled polyoma virus middle T antigen (PyVT) mammary tumor cell line. Analysis of the co-culture system was performed using flow cytometry to determine the relative constitution of the co-cultures over time. This analysis determined that the cultures consisted of viable lung and breast cancer cells over a 5-day period. Confocal microscopy was then used to perform live cell imaging of the co-cultures over time. Our studies determined that host lung cells influence the ability of tumor cells to grow, as the presence of lung parenchyma positively affected the proliferation of the mammary tumor cells in culture. In summary, we have developed a novel in vitro model of breast tumor cells in a common metastatic site that can be used to study tumor/host interactions in an important microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

GFP:

Green fluorescent protein

PyVT:

Polyoma virus middle T antigen

PBS:

Phosphate buffered saline

H&E:

Hematoxylin and eosin

FCS:

Fetal calf serum

2D:

Two-dimensional

3D:

Three-dimensional

References

  1. Hiratsuka S, Nakamura K, Iwai S et al (2002) MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell 2(4):289–300. doi:10.1016/S1535-6108(02)00153-8

    Article  PubMed  CAS  Google Scholar 

  2. Itoh T, Tanioka M, Matsuda H et al (1999) Experimental metastasis is suppressed in MMP-9-deficient mice. Clin Exp Metastasis 17(2):177–181. doi:10.1023/A:1006603723759

    Article  PubMed  CAS  Google Scholar 

  3. Muller A, Homey B, Soto H et al (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410(6824):50–56. doi:10.1038/35065016

    Article  PubMed  CAS  Google Scholar 

  4. Gupta GP, Nguyen DX, Chiang AC et al (2007) Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature 446(7137):765–770. doi:10.1038/nature05760

    Article  PubMed  CAS  Google Scholar 

  5. Debnath J, Mills KR, Collins NL et al (2002) The role of apoptosis in creating and maintaining luminal space within normal and oncogene-expressing mammary acini. Cell 111(1):29–40. doi:10.1016/S0092-8674(02)01001-2

    Article  PubMed  CAS  Google Scholar 

  6. Streuli CH, Bissell MJ (1990) Expression of extracellular matrix components is regulated by substratum. J Cell Biol 110:1405–1415. doi:10.1083/jcb.110.4.1405

    Article  PubMed  CAS  Google Scholar 

  7. Debnath J, Muthuswamy SK, Brugge JS (2003) Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30(3):256–268. doi:10.1016/S1046-2023(03)00032-X

    Article  PubMed  CAS  Google Scholar 

  8. Kim JB (2005) Three-dimensional tissue culture models in cancer biology. Semin Cancer Biol 15(5):365–377. doi:10.1016/j.semcancer.2005.05.002

    Article  PubMed  Google Scholar 

  9. Kim JB, Stein R, O’Hare MJ (2004) Three-dimensional in vitro tissue culture models of breast cancer—a review. Breast Cancer Res Treat 85(3):281–291. doi:10.1023/B:BREA.0000025418.88785.2b

    Article  PubMed  Google Scholar 

  10. Martin MD et al (2008) Effect of ablation or inhibition of stromal matrix metalloproteinase-9 lung metastasis in a breast cancer model is dependent on genetic background. Cancer Res 68:6251–6259

    Google Scholar 

  11. Guy CT, Cardiff RD, Muller WJ (1992) Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol Cell Biol 12(3):954–961

    PubMed  CAS  Google Scholar 

  12. Liu M, Skinner SJ, Xu J et al (1992) Stimulation of fetal rat lung cell proliferation in vitro by mechanical stretch. Am J Physiol 263(3 Pt 1):L376–L383

    PubMed  CAS  Google Scholar 

  13. Simpson LL, Tanswell AK, Joneja MG (1985) Epithelial cell differentiation in organotypic cultures of fetal rat lung. Am J Anat 172(1):31–40. doi:10.1002/aja.1001720103

    Article  PubMed  CAS  Google Scholar 

  14. Mourgeon E, Isowa N, Keshavjee S et al (2000) Mechanical stretch stimulates macrophage inflammatory protein-2 secretion from fetal rat lung cells. Am J Physiol Lung Cell Mol Physiol 279(4):L699–L706

    PubMed  CAS  Google Scholar 

  15. Sasser AK, Mundy BL, Smith KM et al (2007) Human bone marrow stromal cells enhance breast cancer cell growth rates in a cell line-dependent manner when evaluated in 3D tumor environments. Cancer Lett 254(2):255–264. doi:10.1016/j.canlet.2007.03.012

    Article  PubMed  CAS  Google Scholar 

  16. Bissell MJ, Radisky D (2001) Putting tumours in context. Nat Rev Cancer 1:46–54

    Article  PubMed  CAS  Google Scholar 

  17. Becker JL, Blanchard DK (2007) Characterization of primary breast carcinomas grown in three-dimensional cultures. J Surg Res 142(2):256–262. doi:10.1016/j.jss.2007.03.016

    Article  PubMed  CAS  Google Scholar 

  18. Novaro V, Roskelley CD, Bissell MJ (2003) Collagen-IV and laminin-1 regulate estrogen receptor alpha expression and function in mouse mammary epithelial cells. J Cell Sci 116(Pt 14):2975–2986. doi:10.1242/jcs.00523

    Article  PubMed  CAS  Google Scholar 

  19. Lee GY, Kenny PA, Lee EH et al (2007) Three-dimensional culture models of normal and malignant breast epithelial cells. Nat Methods 4(4):359–365. doi:10.1038/nmeth1015

    Article  PubMed  CAS  Google Scholar 

  20. Ohmori T, Yang JL, Price JO et al (1998) Blockade of tumor cell transforming growth factor-betas enhances cell cycle progression and sensitizes human breast carcinoma cells to cytotoxic chemotherapy. Exp Cell Res 245(2):350–359. doi:10.1006/excr.1998.4261

    Article  PubMed  CAS  Google Scholar 

  21. Luck AA, Evans AJ, Green AR et al (2008) The influence of basal phenotype on the metastatic pattern of breast cancer. Clin Oncol (R Coll Radiol) 20(1):40–45. doi:10.1016/j.clon.2007.10.002

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the NIH (R01-CA84360 to LMM). We are grateful to Dr. Carlos Arteaga and Dr. Shimian Qu for the pMSCV-GFP vector.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynn M. Matrisian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, M.D., Fingleton, B., Lynch, C.C. et al. Establishment and quantitative imaging of a 3D lung organotypic model of mammary tumor outgrowth. Clin Exp Metastasis 25, 877–885 (2008). https://doi.org/10.1007/s10585-008-9206-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-008-9206-y

Keywords

Navigation