Skip to main content

Advertisement

Log in

Understanding metastatic SCCHN cells from unique genotypes to phenotypes with the aid of an animal model and DNA microarray analysis

  • Original Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Metastasis of squamous cell carcinoma of the head and neck (SCCHN) is a significant health-care problem worldwide. The 5-year survival rate is less than 50% for patients with lymph node metastases. Understanding the molecular basis of SCCHN metastasis would facilitate the development of new therapeutic approaches to the disease. To identify proteins that mediate SCCHN metastasis, we established a SCCHN xenograft mouse model and performed in vivo selection from a SCCHN cell line using the model. In the fourth round of in vivo selection, significant incidences of metastases in lymph nodes (7/10) and lungs (6/10) were achieved from a derived SCCHN cell line as compared with its parental cells, 1/5 in lymph nodes and 0/5 in lungs. Metastatic cell lines from lymph node metastases and parental cell lines from non-metastatic xenograft tumors were subjected to DNA microarray analysis using an Affymetrix gene chip HG-U133A, followed by data mining studies. The identified metastasis-related genes were further evaluated for their encoding protein products and the metastatic cells were examined by biological analyses. DNA microarray analysis highlighted molecular features of the metastatic SCCHN cells, including alteration of expression of cell–cell adhesion proteins, epithelial cell markers, apoptosis and cell cycle regulatory molecules. Further biological analyses of phenotypic alterations revealed that the metastatic cells gained epithelial-mesenchymal transition (EMT) features and were more resistant to anoikis, which are two of the important phenotypes for metastatic SCCHN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

SCCHN:

Squamous cell carcinoma of head and neck

EMT:

Epithelial-mesenchymal transition

EGFR:

Epidermal growth factor receptor

TGF-β:

Transforming growth factor-β

E-cad:

E-cadherin

Cav-1:

Caveolin-1

MAPK:

Mitogen-activated protein kinase

MMP:

Matrix metalloproteinase

MT1-MMP:

Membrane type 1-MMP

uPAR:

Urokinase-type plasminogen activator receptor

PKC:

Protein kinase C

COX-2:

Cyclooxygenase-2

DMEM:

Dulbecco’s modified Eagle’s medium

PBS:

Phosphate buffered saline

PAGE:

Polyacrylamide gel electrophoresis

5-Aza-dC:

5-aza-2′-deoxycytidine

ICF:

Immunocytofluorescence

RFU:

Relative fluorescence unit

References

  1. Parkin DM, Pisani P, Ferlay J (1999) Global cancer statistics. CA Cancer J Clin 49:33–64

    PubMed  CAS  Google Scholar 

  2. Jemal A, Murray T, Ward E et al (2005) Cancer statistics, 2005. CA Cancer J Clin 55:10–30

    Article  PubMed  Google Scholar 

  3. Som PM (1992) Detection of metastasis in cervical lymph nodes: CT and MRI criteria and differential diagnosis. Am J Radiol 158:961–969

    CAS  Google Scholar 

  4. Cancer Facts & Figures 2005 (2005) Edit: American Cancer Society, p 17

  5. Johnson JT, Barnes EL, Myers EN et al (1981) The extracapsular spread of tumors in cervical node metastasis. Arch Otolaryngol 107:725–729

    PubMed  CAS  Google Scholar 

  6. Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2:563–572

    Article  PubMed  CAS  Google Scholar 

  7. Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Caner 3:1–6

    Article  CAS  Google Scholar 

  8. Fidler IJ (2002) The organ microenvironment and cancer metastasis. Differentiation 70:498–505

    Article  PubMed  Google Scholar 

  9. Thiery JP (2003) Epithelial-mesenchymal transitions in development and pathologies. Curr Opin Cell Biol 15:740–746

    Article  PubMed  CAS  Google Scholar 

  10. Thompson EW, Newgreen DF, Tarin D (2005) Carcinoma invasion and metastasis: a role for epithelial-mesenchymal transition? Cancer Res 65:5991–5995; discussion 5995

    Article  PubMed  CAS  Google Scholar 

  11. Tarin D, Thompson EW, Newgreen DF (2005) The fallacy of epithelial mesenchymal transition in neoplasia. Cancer Res 65:5996–6000; discussion 6000–6001

    Article  PubMed  CAS  Google Scholar 

  12. Frisch SM, Francis H (1994) Disruption of epithelial cell–matrix interactions induces apoptosis. J Cell Biol 124:619–626

    Article  PubMed  CAS  Google Scholar 

  13. Frisch SM, Screaton RA (2001) Anoikis mechanisms. Curr Opin Cell Biol 13:555–562

    Article  PubMed  CAS  Google Scholar 

  14. Grossmann J (2002) Molecular mechanisms of “detachment-induced apoptosis–Anoikis”. Apoptosis 7:247–260

    Article  PubMed  CAS  Google Scholar 

  15. Zhang X, Liu Y, Gilcrease MZ et al (2002) A lymph node metastatic mouse model reveals alteration of metastasis-related gene expression in metastatic human oral cancer sublines selected from a poorly metastatic parental cell line. Cancer 95:1663–1672

    Article  PubMed  Google Scholar 

  16. Chen Z, Zhang K, Zhang X et al (2003) Comparison of gene expression between metastatic derivatives and their poorly metastatic parental cells implicates curial tumor-environment interaction in metastasis of head and neck squamous cell carcinoma. Clin Exp Met 20:335–342

    Article  CAS  Google Scholar 

  17. Fiucci G, Ravid D, Reich R, Liscovitch M (2002) Caveolin-1 inhibits anchorage-independent growth, anoikis and invasiveness in MCF-7 human breast cancer cells. Oncogene 21:2365–2375

    Article  PubMed  CAS  Google Scholar 

  18. Fidler IJ, Kripke ML (1977) Metastasis results from preexisting variant cells within a malignant tumor. Science 197(4306):893–895

    Article  PubMed  CAS  Google Scholar 

  19. Heppner G, Yamashina K, Miller B, Miller F (1986) Tumor heterogeneity in metastasis. Prog Clin Biol Res 212:45–59

    PubMed  CAS  Google Scholar 

  20. Ramaswamy S, Ross KN, Lander ES, Golub TR (2003) A molecular signature of metastasis in primary solid tumors. Nat Genet 33:49–54

    Article  PubMed  CAS  Google Scholar 

  21. Fidler IJ, Kripke ML (2003) Genomic analysis of primary tumors does not address the prevalence of metastatic cells in the population. Nat Genet 34:23; author reply 25

    Article  PubMed  CAS  Google Scholar 

  22. Zhang X, Hunt JL, Landsittel DP et al (2004) Correlation of protease-activated receptor-1 with differentiation markers in squamous cell carcinoma of the head and neck and its implication in lymph node metastasis. Clin Cancer Res 10:8451–8459

    Article  PubMed  CAS  Google Scholar 

  23. Wang J, Xi L, Hunt JL et al (2004) Expression pattern of chemokine receptors 6 (CCR6) and 7 (CCR7) in squamous cell carcinoma of the head and neck identifies a novel metastatic phenotype. Cancer Res 64:1861–1866

    Article  PubMed  CAS  Google Scholar 

  24. Chen Z, Sun W, Zhang X, Choe M, Shin DM (2005) Selection of metastasis-related genes from a lymph node metastasis mouse model of the head and neck cancer. Clin Exp Met 21:638

    Google Scholar 

  25. Jones J, Out H, Spentzos D et al (2005) Gene signature of progression and metastasis in renal cell cancer. Clin Cancer Res 11:5730–5739

    Article  PubMed  CAS  Google Scholar 

  26. Xi L, Lyons-Weiler J, Coello MC et al (2005) Prediction of lymph node metastasis by analysis of gene expression profiles in primary lung adenocarcinomas. Clin Cancer Res 11:4128–4235

    Article  PubMed  CAS  Google Scholar 

  27. Weiget B, Glas AM, Wessels LFA, Witteveen AT, Peterse JL (2003) Gene expression profiles of primary breast tumors maintained in distant metastases. Proc Natl Acad Sci USA 100:15901–15905

    Article  CAS  Google Scholar 

  28. Paris PL, Weinberg V, Simko J (2005) Preliminary evaluation of prostate cancer metastatic risk biomarkers. Int J Biol Markers 20:141–145

    PubMed  CAS  Google Scholar 

  29. Roepman P, Wessels LFA, Kettelarij N et al (2005) An expression profile for diagnosis of lymph node metastases from primary head and neck squamous cell carcinomas. Nat Genet 37:182–186

    Article  PubMed  CAS  Google Scholar 

  30. Chung CH, Parker JS, Karaca G et al (2004) Molecular classification of head and neck squamous cell carcinomas using patterns of gene expression. Cancer Cell 5:489–500

    Article  PubMed  CAS  Google Scholar 

  31. Eckhardt BL, Parker BS, van Laar RK et al (2005) Genomic analysis of a spontaneous model of breast cancer metastasis to bone reveals a role for the extracellular matrix. Mol Cancer Res 3:1–13

    PubMed  CAS  Google Scholar 

  32. Kluger HM, Chelouche Lev D, Kluger Y et al (2005) Using a xenograft model of human breast cancer metastasis to find gene associated with clinically aggressive disease. Cancer Res 65:5578–5587

    Article  PubMed  CAS  Google Scholar 

  33. Huber MA, Kraut N, Beug H (2005) Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol 17:548–558

    Article  PubMed  CAS  Google Scholar 

  34. Thiery JP (2002) Epithelial-mesenchymal transitions in tumor progression. Nat Rev Cancer 2:442–454

    Article  PubMed  CAS  Google Scholar 

  35. Bankfalvi A, KraBort M, Buchwalow LB, Vegh A, Feiszeghy E, Piffiko J (2002) Gains and losses of adhesion molecules (CD44, E-cadherin, and β-catenin) during oral carcinogenesis and tumor progression. J Pathol 198:343–351

    Article  PubMed  CAS  Google Scholar 

  36. Bankfalvi A, Krassort M, Vegh A, Felszeghy E, Piffko L (2002) Deranged expression of the E-cadherin/beta-catenin complex and the epidermal growth factor receptor in the clinical evolution and progression of oral squamous cell carcinomas. J Oral Pathol Med 31:450–457

    Article  PubMed  CAS  Google Scholar 

  37. Conacci-Sorrell M, Zhurinsky J, Ben-Ze’ev A (2002) The cadherin-catenin adhesion system in signaling and cancer. J Clin Invest 109:987–991

    Article  PubMed  CAS  Google Scholar 

  38. Zavadil J, Bottinger EP (2005) TGF-β and epithelial-to-mesenchychymal transitions. Oncogene 24:5764–5774

    Article  PubMed  CAS  Google Scholar 

  39. Bachman KE, Park BH (2005) Duel nature of TGF-β signaling: tumor suppressor vs. tumor promoter. Curr Opin Oncol 17:49–54

    Article  PubMed  CAS  Google Scholar 

  40. Summy JM, Gallick GE (2003) Src family kinase in tumor progression and metastasis. Cancer Met Rev 22:337–358

    Article  CAS  Google Scholar 

  41. Avizienyte E, Brunton VG, Fincham VJ, Frame MC (2005) The SRC-induced mesenchymal state in late-stage colon cancer cells. Cell Tissues Organs 179:73–80

    Article  CAS  Google Scholar 

  42. Playford MP, Schaller MD (2004) The interplay between Src and integrins in normal and tumor biology. Oncogene 23:7928–7946

    Article  PubMed  CAS  Google Scholar 

  43. Ishizawar R, Parsons SJ (2004) C-Src and cooperating partners in human cancer. Cancer Cell 6:209–214

    Article  PubMed  CAS  Google Scholar 

  44. Engelberg D (2004) Stress-activated protein kinases-tumor suppressors or tumor initiators? Semi Cancer Biol 14:271–282

    Article  CAS  Google Scholar 

  45. Bhowmick NA, Zent R, Ghiass M, McDonnell M, Moses H (2001) Integrin β1 signaling is necessary for transforming growth factor-β activation of p38MAPK and epithelial plasticity. J Biol Chem 276:46707–46713

    Article  PubMed  CAS  Google Scholar 

  46. Shin I, Kim S, Song H, Kim H-RC, Moon A (2005) H-Ras-specific activation of Rac-MKK3/6-p38 Pathway. J Biol Chem 280:14675–14683

    Article  PubMed  CAS  Google Scholar 

  47. Laferriere J, Houle F, Huot J (2002) Regulation of the metastatic process by E-selectin and stress-activated protein kinase-2/p38. Ann NY Acad Sci 973:562–572

    Article  PubMed  CAS  Google Scholar 

  48. Lin M, DiVito MM, Merajver SD, Boyanapalli M, van Golen KL (2005) Regulation of pancreatic cancer cell migration and invasion by RhoC GTPase and caveolin-1. Mol Cancer 4:21

    Article  PubMed  CAS  Google Scholar 

  49. Okamoto T, Schlegel A, Scherer PE, Lisanti MP (1998) Caveolins, a family of scaffolding proteins for organizing “preassembled signaling complexes” at the plasma membrane. J Biol Chem 273:5419–5422

    Article  PubMed  CAS  Google Scholar 

  50. Liu P, Rudick M, Anderson RG (2002) Multiple functions of caveolin-1. J Biol Chem 277:41295–41298

    Article  PubMed  CAS  Google Scholar 

  51. Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2:563–572

    Article  PubMed  CAS  Google Scholar 

  52. Luzzi KJ, MacDonald IC, Schmidt EE et al (1998) Dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am J Pathol 153:865–873

    PubMed  CAS  Google Scholar 

  53. Wong CW, Lee A, Shientag L et al (2001) Apoptosis: an early event in metastatic inefficiency. Cancer Res 61:333–338

    PubMed  CAS  Google Scholar 

  54. Kramer RH, Shen X, Zhou H (2005) Tumor cell invasion and survival in head and neck cancer. Cancer Met Rev 24:35–45

    Article  CAS  Google Scholar 

  55. Yoon Y, Liang Z, Kang S (2005) CXCR4 antagonist blocks both primary tumor and metastasis in head and neck cancer animal models. Proceedings: AACR 46:Abstract 2327

  56. Moroy T, Geisen C (2004) Cyclin E. Int J Biochem Cell Biol 36:1424–1439

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This study is supported by an R21 grant from the US National Institutes of Health to Z (G) Chen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuo (Georgia) Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Su, L., Pirani, A.A. et al. Understanding metastatic SCCHN cells from unique genotypes to phenotypes with the aid of an animal model and DNA microarray analysis. Clin Exp Metastasis 23, 209–222 (2006). https://doi.org/10.1007/s10585-006-9031-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-006-9031-0

Keywords

Navigation