Skip to main content

Advertisement

Log in

Heparanase Expression and TrkC/p75NTR Ratios in Human Medulloblastoma

  • Original paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Medulloblastoma (MB), the most devastating and common brain tumor in children, is highly invasive and extremely difficult to treat. Identifying the properties of MB tumors that cause them to invade and metastasize is therefore imperative for the development of novel treatments. We performed investigations to elucidate prognostic implications of heparanase (HPSE-1) and TrkC/p75NTR expression in MB using formalin-fixed, paraffin-embedded (FFPE) MB clinical specimens from children aged 1–19 years. Expressions of p75NTR and HPSE-1 correlated with each other (Pearson’s correlation R = 0.899; P < 0.0001; R 2 = 81%; n = 14). In addition, TrkC:p75NTR ratios correlated with MB meningeal spread (R = 0.608; P = 0.0212; R 2 = 37%; n = 14). Secondly, using antibodies specific to TrkC and HPSE-1, we carried out immunohistochemistry (IHC) on 22 human MB tissue samples. IHC reaction scores revealed a significant expression of HPSE-1 in 76% of MB tissues from children aged 3 years and older (P = 0.0490; n = 17) while TrkC immunoreactivity was detected in 71% of these patient samples. Of note, TrkC was significantly present in 100% of MB female patients (P = 0.0313; n = 6). These studies support the role of p75NTR and HPSE-1 as two novel molecular determinants involved in the biology and clinical progression of MB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BM:

basement membrane

CSF:

cerebrospinal fluid

Ct:

threshold value

ECM:

extracellular matrix

FAM:

carboxyfluorescein

FFPE:

formalin-fixed paraffin-embedded

HPSE-1:

heparanase

HRP:

horseradish peroxidase

HSPG:

heparan sulfate proteoglycans

IHC:

immunohistochemistry

MB:

medulloblastoma

MRI:

magnetic resonance imaging

QPCR:

quantitative polymerase chain reaction

TAMRA:

n,n,n′,n′-tetramethyl-6-carboxyrhodamine

References

  1. Giordana MT, Schiffer P, Schiffer D (1998) Prognostic factors in medulloblastoma. Childs Nerv Syst 14(6):256–262

    Article  PubMed  CAS  Google Scholar 

  2. Chopra A, Brown KM, Rood BR et al (2003) The use of gene expression analysis to gain insights into signaling mechanisms of metastatic medulloblastoma. Pediatr Neurosurg 39(2):68–74

    Article  PubMed  Google Scholar 

  3. Gilbertson RJ (2004) Medulloblastoma: signalling a change in treatment. Lancet Oncol 5(4):209–218

    Article  PubMed  Google Scholar 

  4. Marino S (2005) Medulloblastoma: developmental mechanisms out of control. Trends Mol Med 11(1):17–22

    Article  PubMed  CAS  Google Scholar 

  5. Frühwald MC, Plass C (2002) Metastatic medulloblastoma–therapeutic success through molecular target identification? Pharmacogenomics J 2(1):7–10

    Article  PubMed  Google Scholar 

  6. Burns AS, Jaros E, Cole M et al (2002) The molecular pathology of p53 in primitive neuroectodermal tumours of␣the central nervous system. Br J Cancer 86(7):1117– 1123

    Article  PubMed  CAS  Google Scholar 

  7. Gajjar A, Hernan R, Kocak M et al (2004) Clinical, histopathologic, and molecular markers of prognosis: toward a new disease risk stratification system for medulloblastoma. J␣Clin Oncol 22(6):984–993

    Article  PubMed  CAS  Google Scholar 

  8. Gilbertson RJ, Perry RH, Kelly PJ et al (1997) Prognostic significance of HER2 and HER4 coexpression in childhood medulloblastoma. Cancer Res 57(15):3272–3280

    PubMed  CAS  Google Scholar 

  9. Grotzer MA, Janss AJ, Fung K et al (2000) TrkC expression predicts good clinical outcome in primitive neuroectodermal brain tumors. J Clin Oncol 18(5):1027–1035

    PubMed  CAS  Google Scholar 

  10. Grotzer MA, Hogarty MD, Janss AJ et al (2001) MYC messenger RNA expression predicts survival outcome in childhood primitive neuroectodermal tumor/medulloblastoma. Clin Cancer Res 7(8):2425–2433

    PubMed  CAS  Google Scholar 

  11. Herms J, Neidt I, Luscher B et al (2000) C-MYC expression in medulloblastoma and its prognostic value. Int J Cancer 89(5):395–402

    Article  PubMed  CAS  Google Scholar 

  12. Jaros E, Lunec J, Perry RH et al (1993) p53 protein overexpression identifies a group of central primitive neuroectodermal tumours with poor prognosis. Br J Cancer 68(4):801–807

    PubMed  CAS  Google Scholar 

  13. MacDonald TJ, Brown KM, LaFleur B et al (2001) Expression profiling of medulloblastoma: PDGFRA and the RAS/MAPK pathway as therapeutic targets for metastatic disease. Nat Genet 29(2):143–152

    Article  PubMed  CAS  Google Scholar 

  14. Pomeroy SL, Tamayo P, Gaasenbeek M et al (2002) Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415:436– 442

    Article  PubMed  CAS  Google Scholar 

  15. Segal RA, Goumnerova LC, Kwon YK et al (1994) Expression of the neurotrophin receptor TrkC is linked to a favorable outcome in medulloblastoma. Proc Natl Acad Sci USA 91(26):12867–12871

    Article  PubMed  CAS  Google Scholar 

  16. Gilbertson RJ, Gajjar A (2005) Molecular biology of medulloblastoma: will it ever make a difference to clinical management? J Neurooncol 75(3):273–278

    Article  PubMed  CAS  Google Scholar 

  17. Antonov J, Goldstein DR, Oberli A et al (2005) Reliable gene expression measurements from degraded RNA by quantitative real-time PCR depend on short amplicons and a proper normalization. Lab Invest 85(8):1040–1050

    Article  PubMed  CAS  Google Scholar 

  18. Sinnappah-Kang ND, Kaiser AJ, Blust BE et al (2005) Heparanase, TrkC and p75NTR: their functional involvement in human medulloblastoma cell invasion. Int J Oncol 27(3):617–626

    PubMed  CAS  Google Scholar 

  19. Marchetti D (2000) Human heparanase: a molecular determinant of tumor metastasis and angiogenesis. Cancer Res Alert 2(7):73–84

    Google Scholar 

  20. Toyoshima M, Nakajima M (1999) Human heparanase. Purification, characterization, cloning, and expression. J Biol Chem 274(34):24153–24160

    Article  PubMed  CAS  Google Scholar 

  21. Vlodavsky I, Friedmann Y (2004) Molecular properties and involvement of heparanase in cancer metastasis and angiogenesis. J Clin Invest 108(3):341–347

    Google Scholar 

  22. Sanderson RD, Yang Y, Suva LJ et al (2004) Heparan sulfate proteoglycans and heparanase–partners in osteolytic tumor growth and metastasis. Matrix Biol 23(6):341–352

    Article  PubMed  CAS  Google Scholar 

  23. Nobuhisa T, Naomoto Y, Takaoka M et al (2005) Emergence of nuclear heparanase induces differentiation of human mammary cancer cells. Biochem Biophys Res Comm 331(1):175–180

    Article  PubMed  CAS  Google Scholar 

  24. Biegel JA (1999) Cytogenetics and molecular genetics of childhood brain tumors. Neuro-oncol 1(2):139–151

    Article  PubMed  CAS  Google Scholar 

  25. Frühwald MC, O’Dorisio MS, Dai Z et al (2001) Aberrant promoter methylation of previously unidentified target genes is a common abnormality in medulloblastomas–implications for tumor biology and potential clinical utility. Oncogene 20(36):5033–5042

    Article  PubMed  Google Scholar 

  26. Tong CY, Hui AB, Yin XL et al (2004) Detection of oncogene amplifications in medulloblastomas by comparative genomic hybridization and array-based comparative genomic hybridization. J Neurosurg Spine 100(2):187–193

    CAS  Google Scholar 

  27. Kim JY, Sutton ME, Lu DJ et al (1999) Activation of neurotrophin-3 receptor TrkC induces apoptosis in medulloblastomas. Cancer Res 59(3):711–719

    PubMed  CAS  Google Scholar 

  28. Ketterer K, Rao S, Friess H et al (2003) Reverse transcription-PCR analysis of laser-captured cells points to potential paracrine and autocrine actions of neurotrophins in pancreatic cancer. Clin Cancer Res 9(14):5127–5136

    PubMed  CAS  Google Scholar 

  29. Bustin SA (2000) Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25(2):169–193

    Article  PubMed  CAS  Google Scholar 

  30. SAS Institute (2002) SAS/STAT 9 User’s Guide. SAS Institute, Cary

    Google Scholar 

  31. Ott R (1993) An introduction to statistical methods and data analysis. Wadsworth Publishing Company, Belmont

    Google Scholar 

  32. Vandesompele J, De Preter K, Pattyn F et al (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7):RESEARCH0034

    Article  PubMed  Google Scholar 

  33. Srinivasan M, Sedmak D, Jewell S (2002) Effect of fixatives and tissue processing on the content and integrity of nucleic acids. Am J Pathol 161(6):1961–1971

    PubMed  CAS  Google Scholar 

  34. Abrahamsen HN, Steiniche T, Nexo E et al (2003) Towards quantitative mRNA analysis in paraffin-embedded tissues using real-time reverse transcriptase-polymerase chain reaction: a methodological study on lymph nodes from melanoma patients. J Mol Diagn 5(1):34–41

    PubMed  CAS  Google Scholar 

  35. Specht K, Richter T, Muller U et al (2001) Quantitative gene expression analysis in microdissected archival formalin-fixed and paraffin-embedded tumor tissue. Am J Pathol 158(2):419–429

    PubMed  CAS  Google Scholar 

  36. von Smolinski D, Leverkoehne I, Samson-Himmelstjerna G et al (2005) Impact of formalin-fixation and paraffin-embedding on the ratio between mRNA copy numbers of differently expressed genes. Histochem Cell Biol 124(2):177–188

    Article  CAS  Google Scholar 

  37. De Clerck YA, Shimada H, Gonzalez-Gomez I et al (1994) Tumoral invasion in the central nervous system. J Neurooncol 18(2):111–121

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Manjit S. Kang, Professor of Quantitative Genetics (LSU-AgCtr) for his help with SAS analyses and for reviewing the manuscript. We would also like to thank Julie Miller and Sherry Ring (LSU-SVM) for their help in performing the immunoreactions. We also express our gratitude to Adam J. Kaiser for his help in processing tissue samples and to Bryan E. Blust for his editorial help. This work was supported by grants from National Institutes of Health of USA (NIH) (R21 CA103955) and from Phillip Morris USA and Phillip Morris International to D.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario Marchetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinnappah-Kang, N.D., Mrak, R.E., Paulsen, D.B. et al. Heparanase Expression and TrkC/p75NTR Ratios in Human Medulloblastoma. Clin Exp Metastasis 23, 55–63 (2006). https://doi.org/10.1007/s10585-006-9017-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-006-9017-y

Keywords

Navigation