Skip to main content
Log in

On the deflection of asteroids with mirrors

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

This paper presents an analysis of an asteroid deflection method based on multiple solar concentrators. A model of the deflection through the sublimation of the surface material of an asteroid is presented, with simulation results showing the achievable impact parameter with, and without, accounting for the effects of mirror contamination due to the ejected debris plume. A second model with simulation results is presented analyzing an enhancement of the Yarkovsky effect, which provides a significant deflection even when the surface temperature is not high enough to sublimate. Finally the dynamical model of solar concentrators in the proximity of an irregular celestial body are discussed, together with a Lyapunov-based controller to maintain the spacecraft concentrators at a required distance from the asteroid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barucci M., Yoshikawa M., Michel P., Kawagushi J., Yano H., Brucato J., Franchi I., Dotto E., Fulchignoni M., Ulamec S.: MARCO POLO: Near earth object sample return mission. Exp. Astron. 23(3), 785–808 (2009)

    Article  ADS  Google Scholar 

  • Battin, R.H.: An Introduction to the Mathematics and Methods of Astrodynamics, Revised edn. AIAA Education Series, New York (1999)

  • Brož, M.: Yarkovsky Effect and the Dynamics of the Solar System, PhD thesis, Faculty of Mathematics and Physics, Astronomical Institute, Charles University, Prague, Czech Republic (2006)

  • Carusi A., Valsecchi G.B., D’abramo G., Bottini A.: Deflecting NEOs in route of collision with the earth. Icarus 159(2), 417–422 (2002). doi:10.1006/icar.2002.6906

    Article  ADS  Google Scholar 

  • Chesley, S.R.: Potential impact detection for near-Earth asteroids: The case of 99942 Apophis (2004 MN4). In: Asteroids, Comets, Meteors Proceedings, vol. 229, pp. 215–228. IAU Symposium (2005)

  • Colombo C., Vasile M., Radice G.: Optimal low-thrust trajectories to asteroids through an algorithm based on differential dynamic programming. Celest. Mech. Dyn. Astron. 105(1–3), 75–112 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  • Colombo C., Vasile M., Radice G.: Semi-analytical solution for the optimal low-thrust deflection of near-earth objects. J. Guid. Control Dyn. 32(3), 796–809 (2009). doi:10.2514/1.40363

    Article  Google Scholar 

  • Conway B.: Near-optimal deflection of earth-approaching asteroids. J. Guid. Control Dyn. 24(5), 1035–1037 (2001)

    Article  Google Scholar 

  • Delbò M., Cellino A., Tedesco E.: Albedo and size determination of potentially hazardous asteroids: (99942) Apophis. Icarus 188, 266–269 (2007). doi:10.1016/j.icarus.2006.12.024

    Article  ADS  Google Scholar 

  • Giorgini J., Benner L., Ostroa S., Nolan M., Busch M.: Predicting the earth encounters of (99942) apophis. Icarus 193, 1–19 (2008). doi:10.1016/j.icarus.2007.09.012

    ADS  Google Scholar 

  • Glassmeier K.H., Boehnhardt H., Koschny D., Kührt E., Richter I.: The rosetta mission: Flying towards the origin of the solar system. Space Sci. Rev. 128(1–4), 1–21 (2007)

    Article  ADS  Google Scholar 

  • Gong S.P., Li J.F., BaoYin H.X.: Formation flying solar-sail gravity tractors in displaced orbit for towing near-earth asteroids. Celest. Mech. Dyn. Astron. 105(1–3), 159–177 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  • Hall C.D., Ross I.M.: Dynamics and control problems in the deflection of Near-Earth Objects. Adv. Astronaut. Sci. 67(640), 1–18 (1997)

    Google Scholar 

  • Hampton D., Baer J., Huisjen M., Varner C., Delamere A., Wellnitz D., A’Hearn M., Klaasen K.: An overview of the instrument suite for the deep impact mission. Space Sci. Rev. 117(1–2), 43–93 (2005)

    Article  ADS  Google Scholar 

  • Hu W., Scheeres D.J.: Spacecraft motion about slowly rotating asteroids. J. Guid. Control Dyn. 25(4), 765–775 (2002)

    Article  Google Scholar 

  • IAU Minor Planet Center: Observer services: Neos. http://www.cfa.harvard.edu/iau/mpc.html (2010)

  • Izzo, D.: On the deflection of potentially hazardous objects. In: AIAA/AAS Space Flight Mechanics Conference. Copper Mountain, Colorado (2005)

  • Kahle R., Kührt E., Hahn G., Knollenberg J.: Physical limits of solar collectors in deflecting earth-threatening asteroids. Aerosp. Sci. Technol. 10, 253–263 (2006). doi:10.1016/j.ast.2005.12.004

    Article  Google Scholar 

  • Legge, H., Boettcher, R.: Modelling control thrust plume flow and impingement. In: International Symposium on Rarefied Gas Dynamics, pp. 983–992 (1982)

  • Lunan D.: Need we protect earth from space objects and if so, how?. Space Policy 8(1), 90–91 (1992)

    Article  Google Scholar 

  • Maddock C., Vasile M.: Design of optimal spacecraft-asteorid formations through a hybrid global optimization approach. J. Intell. Comput. Cybern. 1(2), 239–268 (2008). doi:10.1108/17563780810874735

    Article  MATH  Google Scholar 

  • McAdams, J.V., Dunham, D.W., Mosher, L.E., Ray, J.C., Antreasian, P.G., Helfrich, C.E., Miller, J.K.: Maneuver history for the NEAR mission—launch through Eros orbit insertion. In: Proceedings of the AIAA/AAS Astrodynamics Specialist Conference, AIAA-2000-4141 (2000)

  • Melosh H.J., Nemchinov I.V.: Solar asteroid diversion. Nature 366, 21–22 (1993)

    Article  ADS  Google Scholar 

  • Melosh H.J., Nemchinov I.V., Zetzer Y.I.: Non-nuclear strategies for deflecting comets and asteroids. In: Gehrels, T. (eds) Hazard Due to Comets and Asteroids, pp. 1111–1132. University of Arizona Press, Tucson (1994)

    Google Scholar 

  • Nakamura, A.M., Michel, P.: Asteroids and their collisional disruption. In: Lecture Notes in Physics, Small Bodies in Planetary Systems, pp. 1–27. Springer, Berlin (2009)

  • NASA Near Earth Object program: 99942 Apophis (2004 MN4) impact risk. Online database, http://neo.jpl.nasa.gov/risk/a99942.html (2010)

  • Near-Earth Object Science Definition Team: Study to determine the feasibility of extending the search for Near-Earth Objects to smaller limiting diameters. Tech. rep., National Aeronautics and Space Administration (NASA) (2003)

  • Park S.Y., Mazanek D.D.: Deflection of earth-crossing asteroids/comets using rendezvous spacecraft and laser ablation. J. Astronaut. Sci. 53(1), 21–37 (2005)

    Google Scholar 

  • Perozzi E., Casalino L., Colasurdo G., Rossi A., Valsecchi G.: Resonant fly-by missions to near earth asteroids. Celest. Mech. Dyn. Astron. 83(1–4), 49–62 (2002)

    Article  MATH  ADS  Google Scholar 

  • Rayman M., Varghese P., Lehman D., Livesay L.: Results from the deep space 1 technology validation mission. Acta Astronaut. 47(2), 475–487 (2000)

    Article  ADS  Google Scholar 

  • Remo J.L.: Classifying and modeling NEO material properties and interactions. In: Gehrels, T., Matthews, M.S., Schumann, A. (eds) Hazards Due to Comets and Asteroids, Space Science Series, pp. 551–596. University of Arizona Press, Tucson (1994)

    Google Scholar 

  • Rossi A., Marzari F., Farinella P.: Orbital evolution around irregular bodies. Earth Planets Space 51, 1173–1180 (1999)

    ADS  Google Scholar 

  • Russell C.T., Capaccioni F., Coradini A., de Sanctis M.C., Feldman W.C., Jaumann R., Keller H.U., McCord T.B., McFadden L.A., Mottola S., Pieters C.M., Prettyman T.H., Raymond C.A., Sykes M.V., Smith D.E., Zuber M.T.: Dawn mission to Vesta and Ceres. Earth Moon Planets 101(1–2), 65–91 (2007)

    Article  ADS  Google Scholar 

  • Sanchez J.P., Vasile M., Radice G.: Consequences of asteroid fragmentation during impact hazard mitigation. J Guid. Control Dyn. 33(1), 126–146 (2010). doi:10.2514/1.43868

    Article  Google Scholar 

  • Sanchez Cuartielles J.P., Colombo C., Vasile M., Radice G.: Multi-criteria comparison among several mitigation strategies for dangerous near earth objects. J. Guid. Control Dyn. 32(1), 121–142 (2009). doi:10.2514/1.36774

    Article  Google Scholar 

  • Scheeres, D.J., Schweickart, R.L.: The mechanics of moving asteroids. In: Planetary Defense Conference: Protecting Earth from Asteroids. AIAA, Orange County, California (2004)

  • Schweickart, R.L.: A call to (considered) action: International space development conference. Occasional Paper 0501, B612 Foundation (2005)

  • Stephan T.: Assessing the elemental composition of comet 81P/Wild 2 by analyzing dust collected by stardust. Space. Sci. Rev. 138(1–4), 247–258 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  • Vasile M., Colombo C.: Optimal impact strategies for asteroid deflection. J. Guid. Control Dyn. 31(4), 858–872 (2008). doi:10.2514/1.33432

    Article  Google Scholar 

  • Vasile, M., Maddock, C., Radice, G., McInnes, C.: Call for ideas: NEO Encounter 2029, NEO deflection through a multi-mirror system. Tech. Rep. Ariadna ID: 08/4301, Contract Number: 21665/08/NL/CB, ESA/ESTEC Advanced Concepts Team (2009)

  • Vokrouhlicky D., Chesley S., Milani A.: On the observability of radiation forces acting on near-earth asteroids. Celest. Mech. Dyn. Astron. 81(1–2), 149–165 (2001)

    Article  MATH  ADS  Google Scholar 

  • Wang J., Davis A., Clayton R., Hashimoto A.: Evaporation of single crystal forsterite: Evaporation kinetics, magnesium isotope fractionation, and implications of mass-dependent isotopic fractionation of a diffusion-controlled reservoir. Geochimica et Cosmochim. Acta 63(6), 953–966 (1999). doi:10.1016/S0016-7037(98)00286-5

    Article  ADS  Google Scholar 

  • Yoo S.M., Song Y.J., Park S.Y., Choi K.H.: Spacecraft formation flying for earth-crossing object deflections using a power limited laser ablating. Adv. Space Res. 43, 1873–1889 (2009). doi:10.1016/j.asr.2009.03.025

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimiliano Vasile.

Additional information

This research is partially supported by the ESA/ESTEC Ariadna study 08/4301, contract number: 21665/08/NL/CB (Vasile et al. 2009).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasile, M., Maddock, C.A. On the deflection of asteroids with mirrors. Celest Mech Dyn Astr 107, 265–284 (2010). https://doi.org/10.1007/s10569-010-9277-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-010-9277-3

Keywords

Navigation