Skip to main content

Advertisement

Log in

MWCNT-Supported Ni–Mo–K Catalyst for Higher Alcohol Synthesis from Syngas

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A type of novel MWCNT-supported Ni–Mo–K catalysts for higher alcohol synthesis (HAS) from syngas was developed, which displayed excellent performance for the selective formation of C1–3-alcohols and DME from syngas. Over the 15%Ni1Mo1K0.05/CNTs catalyst under the reaction conditions of 5.0 MPa and 538 K, the C-based selectivity of (C1–3-alc. + DME) reached 59.0%, with the corresponding STY of 205 mg h−1 g−1. This value was 1.16 times that of the 35%Ni1Mo1K0.05/AC catalyst with the optimal Ni1Mo1K0.05 loading, and 1.76 times that of the non-supported co-precipitated Ni1Mo1K0.05 host system, under the same reaction conditions. The results of the catalyst characterizations revealed that the CNT-support has strong influence on the chemical states of catalyst via its interaction with the supported Ni–Mo components, leading to the increase of the molar percentage of NiO(OH) and Mo4+/Mo5+ (the two kinds of catalytically active surface-species related closely to selective formation of C1–3-alcohols) and the dramatic decrease of the molar percentage of Ni0 and Mo0 (the two kinds of catalytically active surface-species related closely to selective formation of hydrocarbons, especially methanation of CO). Moreover, the CNT-support also provided the sp 2-C surface-sites for adsorption-activation of H2. All these factors contribute to an increase in selectivity of generating C1–3-alcohols.

Graphical Abstract

A type of novel MWCNT-supported Ni–Mo–K catalysts was developed, which displayed excellent performance for higher alcohol synthesis from syngas. The observed CO conversion and C1–3-oxygenate selectivity were markedly higher than those of the AC-supported Ni–Mo–K catalyst and non-supported counterpart as reference under the same reaction conditions. The nature of promoter action by CNTs was inquired.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fujimoto K, Oba T (1985) Appl Catal 13:289–293

    Article  CAS  Google Scholar 

  2. Inoue M, Miyake T, Takegami Y, Inui T (1987) Appl Catal 29:285–294

    Article  CAS  Google Scholar 

  3. Tatsumi T, Muramatsu A, Fukunaga T, Tominaga H (1988) In: Phillips MJ, Ternan M (eds) Proceedings of the 9th international congress on catalysis, vol 2, pp 618–625

  4. Murchison CB, Conway MM, Stevens RR, Quarderer GJ (1988) In: Phillips MJ, Ternan M (eds) Proceedings of the 9th international congress on catalysis, vol 2, pp 626–633

  5. Li Z, Fu Y, Bao J, Jiang M, Hu T, Liu T, Xie Y (2001) Appl Catal A 220(1):21–30

    Article  CAS  Google Scholar 

  6. Li D, Yang C, Qi H, Zhang H, Li W, Sun Y, Zhong B (2004) Catal Commun 5:605–609

    Article  CAS  Google Scholar 

  7. Forzatti P, Tronconi E, Pasquon I (1991) Catal Rev Sci Eng 33:109–168

    Article  CAS  Google Scholar 

  8. Stiles AB, Chen F, Harrison JB, Hu X, Storm DA, Yang HX (1991) Ind Eng Chem Res 30:811–821

    Article  CAS  Google Scholar 

  9. Slaa JC, van Ommen JG, Ross JRH (1992) Catal Today 15:129–148

    Article  CAS  Google Scholar 

  10. de Jong KP, Geus JW (2000) Catal Rev Sci Eng 42(4):481–510

    Article  Google Scholar 

  11. Serp P, Corrias M, Kalck P (2003) Appl Catal A 253(2):337–358

    Article  CAS  Google Scholar 

  12. Zhang HB, Lin GD, Yuan YZ (2005) Curr Top Catal 4:1–21

    CAS  Google Scholar 

  13. Zhang HB, Liang XL, Dong X, Li HY, Lin GD (2009) Catal Surv Asia 13(1):41–58

    Article  CAS  Google Scholar 

  14. Iijima S (1991) Nature 354:56–58

    Article  CAS  Google Scholar 

  15. Chen P, Zhang HB, Lin GD, Hong Q, Tsai KR (1997) Carbon 35(10–11):1495–1501

    Article  CAS  Google Scholar 

  16. Chen P, Zhang HB, Lin GD, Tsai KR (1998) Chem J Chin Univ 19(5):765–769

    CAS  Google Scholar 

  17. Ma CH, Dong X, Tang PP, Lin GD, Feng XT, Zhang HB (2008) Chem Ind Eng Prog (Chin) 27(suppl):258–261

    Google Scholar 

  18. Zhang HB, Lin GD, Zhou ZH, Dong X, Chen T (2002) Carbon 40(13):2429–2436

    Article  CAS  Google Scholar 

  19. XRD data bank attached to X’Pert PRO X-ray Diffractometer, PANalytical, The Netherlands (2003)

  20. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1995) Handbook of X-ray photoelectron spectroscopy—a reference book of standard spectra for identification and interpretation of XPS data. Physical Electronics Inc., Eden Prairie

    Google Scholar 

  21. Abart J, Delgado E, Ertl G, Jeziorowshi H, Knözinger H, Thiele N, Wang XZ, Taglauer E (1982) Appl Catal 2:155–176

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work is supported by National Basic Research (“973”) Project (2009CB939804) and Fujian Provincial Natural Science Foundation Project (E0510001) of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Bin Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, CH., Li, HY., Lin, GD. et al. MWCNT-Supported Ni–Mo–K Catalyst for Higher Alcohol Synthesis from Syngas. Catal Lett 137, 171–179 (2010). https://doi.org/10.1007/s10562-010-0343-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-010-0343-y

Keywords

Navigation