Skip to main content
Log in

In situ nanoscale wet imaging of the heterogeneous catalyzationof nitriles in a solution phase: novel hydrogenation chemistry through nanocatalysts on nanosupports

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Wet-environmental transmission electron microscopy studies of heterogeneous hydrogenation of complex nitriles in a liquid phase over new mesoporous cobalt-promoted ruthenium nanocatalysts on reducible nanotitania supports are presented. The desorbed organic products in the dynamic liquid phase hydrogenation are imaged situ on the nanoscale. The direct studies on the “nanocomposite” catalysts are correlated with parallel reaction chemistry measurements. They demonstrate high hydrogenation activity at low operating temperatures in the presence of atomic scale anion vacancy defects associated with Lewis acid sites at the nanosupport surface and an electronic and synergistic contribution to the promoter mechanism. The combined synergistic effect between the two metals and the interaction with the reduced nanosupport leading to an electronic modification lead to highly reactive site for the hydrogenation catalysis. The results illustrate novel selective hydrogenation chemistry with mesoporous nanocatalyst systems on nanosupports.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. De Bellefon P. Fouilloux (1994) Catal. Reviews. Sci. Eng 36 459 Occurrence Handle1:CAS:528:DyaK2cXltVOlsrc%3D

    CAS  Google Scholar 

  2. G.J. Kauffman (1988) J. Chem. Ed 65 803 Occurrence Handle1:CAS:528:DyaL1cXlvV2gur4%3D

    CAS  Google Scholar 

  3. M. Besson et al. (1990) Bull. Soc. Chim. Fr 127 5

    Google Scholar 

  4. J. Volf et al., Stud. Surf. Sci. Catal. 27, L. Cerveny (ed), (Elsevier, 1986) 105.

  5. F. Mares et al. (1988) J. Catal 112 145 Occurrence Handle10.1016/0021-9517(88)90128-5 Occurrence Handle1:CAS:528:DyaL1MXls1yqsQ%3D%3D

    Article  CAS  Google Scholar 

  6. H. Greenfield (1967) Ind. Eng. Chem. Prod. Res. Dev 6 142 Occurrence Handle10.1021/i360022a014 Occurrence Handle1:CAS:528:DyaF2sXktVaksbw%3D

    Article  CAS  Google Scholar 

  7. T. Nakayama et al. (1984) J. Catal 87 108 Occurrence Handle10.1016/0021-9517(84)90173-8 Occurrence Handle1:CAS:528:DyaL2cXhvVSks7o%3D

    Article  CAS  Google Scholar 

  8. S.J. Tauster et al. (1978) J. Am. Chem. Soc 100 170 Occurrence Handle1:CAS:528:DyaE1cXms1ejsg%3D%3D

    CAS  Google Scholar 

  9. M.G. Sanchez J.L. Gasquez (1987) J. Catal 194 120 Occurrence Handle10.1016/0021-9517(87)90342-3

    Article  Google Scholar 

  10. P.L. Gai(Gai-Boyes) (1992) Catal. Reviews. Sci. Eng 34 1

    Google Scholar 

  11. B. Bradley (1978) Metal Alkoxides Academic Press New York

    Google Scholar 

  12. P.L. Gai K. Kourtakis S.B. Ziemecki (2000) Micrsc. Microanal 6 335 Occurrence Handle1:CAS:528:DC%2BD3cXlsVylsrk%3D

    CAS  Google Scholar 

  13. P.L. Gai (2002) Micrsc. Microanal 8 335

    Google Scholar 

  14. Micromeritics Inc., One Micromeritics Drive, Norcross, GA 30093–1877.

  15. S. Brunauer P.H. Emmett E. Teller (1938) J. Amer. Chem. Soc 60 309 Occurrence Handle10.1021/ja01269a023 Occurrence Handle1:CAS:528:DyaA1cXivFaruw%3D%3D

    Article  CAS  Google Scholar 

  16. E.P. Barret et al. (1951) J. Amer. Chem. Soc 73 373 Occurrence Handle10.1021/ja01145a126

    Article  Google Scholar 

  17. P.L. Gai et al. (1995) Science 267 667

    Google Scholar 

  18. E.D. Boyes P.L. Gai (1997) Ultramicroscopy 67 219 Occurrence Handle10.1016/S0304-3991(96)00099-X Occurrence Handle1:CAS:528:DyaK2sXks1KmsLY%3D

    Article  CAS  Google Scholar 

  19. P.L. Gai, (a) Adv. Mat. 10 (1998) 1259; (b) Top. Catal. 21 (2002) 161.

  20. P.L. Gai, Inst. Phys. Conf. Ser. (London, U.K.), 168- Section 9 (2002) 401.

  21. P.L. Gai E.D. Boyes (2003) Electron Microscopy in Heterogeneous Catalysis Institute of Physics Publishers London UK and Philadelphia USA

    Google Scholar 

  22. D.F. Parsons et al., Adv. Bio. Med. Phys., 15, J.H. Lawrence et al., (eds) (Acad. Press, New York, 1974), p. 161.

  23. A. Fukami et al. (1985) J. Electron Microsc 34 47

    Google Scholar 

  24. T. Daulton et al. (2001) Micrsc. Microanal 7 134

    Google Scholar 

  25. S. Hanton (2001) Chem. Rev 3 527 Occurrence Handle10.1021/cr9901081

    Article  Google Scholar 

  26. M. Blanchin et al. (1981) J. Phys C3 IssueIDsuppl. 6 95

    Google Scholar 

  27. A.M. Stoneham (1981) J. Am. Ceram. Soc 64 54 Occurrence Handle1:CAS:528:DyaL3MXhtV2ksbw%3D

    CAS  Google Scholar 

  28. E. Ruckenstein, Growth of metal clusters J. Bourdon, J. (ed) (Elsevier 1981), 57.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratibha L. Gai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gai, P.L., Kourtakis, K. & Boyes, E. In situ nanoscale wet imaging of the heterogeneous catalyzationof nitriles in a solution phase: novel hydrogenation chemistry through nanocatalysts on nanosupports. Catal Lett 102, 1–7 (2005). https://doi.org/10.1007/s10562-005-5195-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-005-5195-5

Keywords

Navigation