Skip to main content
Log in

Antiapoptosis and Mitochondrial Effect of Pioglitazone Preconditioning in the Ischemic/reperfused Heart of Rat

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Purpose

Pioglitazone, used clinically in the treatment of type 2 diabetes mellitus, has been implicated as a regulator of cellular inflammatory and ischemic responses. The present study examined whether pioglitazone could inhibit cadiocyte apoptosis and reduce mitochondrial ultrastructure injury and membrane potential loss in the ischemic/reperfused heart of the rat. Furthermore, we investigated whether the protective effect of pioglitazone was related to opening of the mitochondrialATP-sensitive potassium channels.

Methods

Adult male Sprague–Dawley rats were subjected to 30 min of ischemia followed by 4 h of reperfusion. At 24 h before ischemia, rats were randomized to receive 0.9% saline, 5-hydroxydecanoate (5-HD, 10 mg kg−1, i.v.) plus pioglitazone (3 mg kg−1, i.v.) or pioglitazone (3 mg kg−1, i.v.). One group served as sham control. We investigated mitochondrial structure, apoptosis rate and Bcl-2, Bax and Caspase-3 proteins by immunohistochemistry staining. RT-PCR was used to determine the expression of P38MAPKmRNA and JNKmRNA. Western blotting was used to measure the expression of P38MAPK, JNK and NFκB P65. A second group of rats were randomly divided into sham-operated, ischemia/reperfusion (I/R), pioglitazone treatment, 5-HD + pioglitazone and 5-HD groups and the size of myocardial infarction was determined. Primary cultured cardiomyocytes of neonatal Sprague–Dawley rats were divided into control, hypoxia reoxygenation, different concentrations of pioglitazone and 5-HD + pioglitazone groups. JC-1 staining flowcytometry was used to examine mitochondrial membrane potential (ΔΨm).

Results

Pioglitazone decreased mitochondrial ultrastructural damage compared to I/R, and reduced infarct size from 34.93 ± 5.55% (I/R) to 20.24 ± 3.93% (P < 0.05). Compared with the I/R group, the apoptosis rate and positive cell index (PCI) of Bax and Caspase-3 proteins in the pioglitazone group were significantly decreased (P < 0.05), while the PCI of Bcl-2 protein was increased (P < 0.05). There was no significant difference between the I/R and 5-HD + pioglitazone groups. Compared with the sham-operated group, the expression of P38MAPK mRNA, JNK mRNA and protein of P38MAPK, JNK and NFκB P65 in I/R was increased (P < 0.05). Pioglitazone did inhibit the increase in expressions vs I/R (P < 0.05). The rate of loss ΔΨm cells in the pioglitazone group was significantly lower than in the hypoxia reoxygenation group, while the addition of 5-HD inhibited the effect of pioglitazone.

Conclusion

Pioglitazone inhibited cadiocyte apoptosis and reduced mitochondrial ultrastructure injury and membrane potential loss in the ischemic/reperfused heart of rat. These protective effects of pioglitazone may be related to opening mitochondrialATP-sensitive potassium channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AAR:

area-at-risk

ANAR:

area-not-at-risk

I/R:

ischemia/reperfusion

PPARγ:

peroxisome proliferator-activated receptor-gamma

ΔΨm:

membrane potential

mitoKATP :

mitochondrialATP-sensitive potassium channels

JNK:

c-Jun N-terminal kinase

References

  1. Liu H-R, Gao F, Tao L. Antiapoptotic mechanisms of benidipine in the ischemic/reperfused heart. Br J Pharmacol. 2004;142:627–34.

    Article  PubMed  CAS  Google Scholar 

  2. Tsutsumi YM, Yokoyama T, Horikawa Y, Roth DM, Patel HH. Reactive oxygen species trigger ischemic and pharmacological postconditioning: in vivo and in vitro characterization. Life Sci. 2007;81:1223–7.

    Article  PubMed  CAS  Google Scholar 

  3. Yellon DM, Downey JM. Preconditioning the myocardium: from cellular physiology to clinical cardiology. Physiol Rev. 2003;83:1113–51.

    PubMed  CAS  Google Scholar 

  4. Marber MS, Latchman DS, Walker JM, Yellon DM. Cardiac stress protein elevation 24 hours after brief ischemia or heat stress is associated with resistance to myocardial infarction. Circulation. 1993;88:1264–72.

    PubMed  CAS  Google Scholar 

  5. Baxter GF, Goma FM, Yellon DM. Characterisation of the infarct-limiting effect of delayed preconditioning: time course and dose-dependency studies in rabbit myocardium. Basic Res Cardiol. 1997;92:159–67.

    Article  PubMed  CAS  Google Scholar 

  6. Grover GJ, Garlid KD. ATP-Sensitive potassium channels: a review of their cardioprotective pharmacology. J Mol Cell Cardiol. 2000;32:677–95.

    Article  PubMed  CAS  Google Scholar 

  7. Gross GJ, Fryer RM. Sarcolemmal versus mitochondrial ATP-sensitive K+ channels and myocardial preconditioning. Circ Res. 1999;84:973–9.

    PubMed  CAS  Google Scholar 

  8. Mironova GD, Skarga YY, Grigoriev SM, Negoda AE, Kolomytkin OV, Marinov BS. Reconstitution of the mitochondrial ATP-dependent potassium channel into bilayer lipid membrane. J Bioenerg Biomembr. 1999;31:159–63.

    Article  PubMed  CAS  Google Scholar 

  9. O’Rourke B. Evidence for mitochondrial K+ channels and their role in cardioprotection. Circ Res. 2004;94:420–32.

    Article  PubMed  CAS  Google Scholar 

  10. Abdelrahman M, Sivarajah A, Thiemermann C. Beneficial effects of PPAR-gamma ligands in ischemia/reperfusion injury, inflammation and shock. Cardiovasc Res. 2005;65:772–81.

    Article  PubMed  CAS  Google Scholar 

  11. Flink IL, Edwards JG, Bahl JJ, et al. Characterization of a strong positive cis-acting element of the human beta-myosin heavy chain gene in fetal rat heart cells. J Biol Chem. 1992;267:9917–24.

    PubMed  CAS  Google Scholar 

  12. Yue T-L, Bao W, Gu J-L, et al. Rosiglitazone treatment in Zucker diabetic fatty rats is associated with ameliorated cardiac insulin resistance and protection from ischemia/reperfusion-induced myocardial injury. Diabetes. 2005;54:554–62.

    Article  PubMed  CAS  Google Scholar 

  13. Li D, Chen K, Sinha N, et al. The effects of PPAR-gamma ligand pioglitazone on platelet aggregation and arterial thrombus formation. Cardiovasc Res. 2005;65:907–12.

    Article  PubMed  CAS  Google Scholar 

  14. Regan SE, Brond M, et al. A1 adenosine receptor overexpression attenuates ischemia–reperfusion-induced apoptosis and caspase 3 activity. Am J Physiol Heart Circ Physiol. 2003;284:H859–66.

    PubMed  CAS  Google Scholar 

  15. Crow MT, Mani K, et al. The mitochondrial death pathway and cardiac myocyte apoptosis. Circulation Research. 2004;95:957–63.

    Article  PubMed  CAS  Google Scholar 

  16. Gottlieb RA, Burleson KO, Kloner RA, Babior BM, Engler RL. Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest. 1994;94:1621–8.

    Article  PubMed  CAS  Google Scholar 

  17. Kroemer G. The proto-oncogene Bcl-2 and its role in regulating apoptosis. Nat Med. 1997;3:614–20.

    Article  PubMed  CAS  Google Scholar 

  18. Grunenfelder J, Miniati DN, Murata S, et al. Upregulation of Bcl-2 through caspase-3 inhibition ameliorates ischemia/reperfusion injury in rat cardiac allografts. Circulation. 2001;104:1-202–6.

    Article  Google Scholar 

  19. Nakamura M, Wang NP, Zhao ZQ, Wilcox JN, Thourani VH, Guyton RA, et al. Preconditioning decreases Bax expression, PMN accumulation and apoptosis in reperfused rat heart. Cardiovasc Res. 2002;45:661–70.

    Article  Google Scholar 

  20. Piot C, Martini J-F, Bui S, Wolfe CL. Ischemic preconditioning attenuates ischemia/reperfusion-induced activation of caspases and subsequent cleavage of poly (ADP-ribose) polymerase in rat hearts in vivo. Cardiovasc Res. 1999;44:536–42.

    Article  PubMed  CAS  Google Scholar 

  21. Javadov S, Karmzzyn M. Mitochondrial permeability transition pore opening as an endpoint to initiate cell death and as a putative target for cardioprotection. Cell Physiol Biochem. 2007;20:1–22.

    Article  PubMed  CAS  Google Scholar 

  22. Bae MA, Song BJ. Critical role of c-Jun N-terminal protein kinase activation in troglitazone-induced apoptosis of human HepG2 hepatoma cells. Mol Pharmacol. 2003;63:401–8.

    Article  PubMed  CAS  Google Scholar 

  23. Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M. Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell. 2005;120:649–61.

    Article  PubMed  CAS  Google Scholar 

  24. Schroeter H, Boyd CS, Ahmed R, Spencer JP, Duncan RF, Rice-Evans C, et al. c-Jun N-terminal kinase (JNK)-mediated modulation of brain mitochondria function: new target proteins for JNK signalling in mitochondrion-dependent apoptosis. Biochem J. 2003;372:359–69.

    Article  PubMed  CAS  Google Scholar 

  25. Mohit AA, Martin JH, Miller CA. p493F12 kinase: a novel MAP kinase expressed in a subset of neurons in the human nervous system. Neuron. 1995;14:67–78.

    Article  PubMed  CAS  Google Scholar 

  26. Monia BP, Johnston JF, Geiger T, Muller M, Fabbro D, et al. Antitumor activity of a phosphorothioate antisense oligodeoxynucleotide targeted against C-raf kinase. Nat Med. 1996;2:668–75.

    Article  PubMed  CAS  Google Scholar 

  27. Davis RJ. Signal transduction by the JNK group of MAP kinases. Cell. 2000;103:239–52.

    Article  PubMed  CAS  Google Scholar 

  28. Moolman JA, Hartley S, Van Wyk J, et al. Inhibition of myocardial apoptosis by ischemic and beta-adrenergic preconditioning is dependent on p38 MAPK. Cardiovasc Drugs Ther. 2006;20:13–25.

    Article  PubMed  CAS  Google Scholar 

  29. Petrich BG, Wang Y. Stress-activated MAP kinases in cardiac remodeling and heart failure: new insights from transgenic studies. Trends Cardiovasc Med. 2004;14:50–5.

    Article  PubMed  CAS  Google Scholar 

  30. Ma XL, Kumar S, Gao F, Louden CS, Lopez BL, Christopher TA, et al. Inhibition of p38 mitogen-activated protein kinase decreases cardiomyocyte apoptosis and improves cardiac function after myocardial ischemia and reperfusion. Circulation. 1999;99:1685–91.

    PubMed  CAS  Google Scholar 

  31. He H, Li HL, Lin A, Gottlieb RA. Activation of the JNK pathway is important for cardiomyocyte death in response to simulated ischemia. Cell Death Differ. 1999;6:987–91.

    Article  PubMed  CAS  Google Scholar 

  32. Andreka P, Zang J, Dougherty C, Slepak TI, Webster KA, Bishopric NH. Cytoprotection by Jun kinase during nitric oxide-induced cardiac myocyte apoptosis. Circ Res. 2001;88:305–12.

    PubMed  CAS  Google Scholar 

  33. Hernández Gutiérrez S, Rojas del Castillo E. Role of the transcription factor NF-kappaB in the cardiac cell. Arch Cardiol Mex 2005;75:363–70.

    PubMed  Google Scholar 

  34. Shunichi K, Toru K, Yoshiya M, et al. Blockade of NF-kappaB improves cardiac function and survival after myocardial infarction. Am J Physiol Heart Circ Physiol. 2006;291:H1337–44.

    Article  Google Scholar 

  35. Morishita R, Sugimoto T, Aoki M, et al. In vivo transfection of cis element “decoy” against nuclear factor-kB binding site prevents myocardial infarction. Nat Med. 1997;3:894–9.

    Article  PubMed  CAS  Google Scholar 

  36. Chandrasekar B, Freeman GL. Induction of nuclear factor kappaB and activation protein 1 in postischemic myocardium. FEBS Lett. 1997;401:30–4.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Lang, MJ., Mao, XB. et al. Antiapoptosis and Mitochondrial Effect of Pioglitazone Preconditioning in the Ischemic/reperfused Heart of Rat. Cardiovasc Drugs Ther 22, 283–291 (2008). https://doi.org/10.1007/s10557-008-6115-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-008-6115-x

Key words

Navigation