Skip to main content
Log in

The benefit of 64-MDCT prior to invasive coronary angiography in symptomatic post-CABG patients

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study is to assess the diagnostic accuracy of 64-MDCT in symptomatic patients after CABG and to explore the advantages of the 64-MDCT results on the CAG procedure.

Material and methods

From December 2004 until August 2005, 34 post-CABG patients (29 men, mean age 63.5 ± 8.5 years) with 69 coronary artery bypass grafts were scanned on a 64-MDCT (Somatom Sensation 64, Siemens AG, Forchheim, Germany) prior to CAG. Angiograms and 64-MDCT images were evaluated for the existence of occlusions or significant stenosis (≥50% lumen reduction) in bypass grafts and native coronary arteries.

Results

64-MDCT had a sensitivity, a specificity, and a diagnostic accuracy of 100% for occlusion detection. For stenosis detection, sensitivity was 100%, specificity 98.7% and diagnostic accuracy 98.7%. For detecting significant stenosis in native coronary arteries, 64-MDCT had a sensitivity of 80.0%, specificity of 90.8%, and a diagnostic accuracy of 87.1%.

Seventeen patients (50.0%) did not need invasive treatment, 14 patients (41.2%) underwent a percutaneous coronary intervention (PCI), and 3 patients (8.8%) underwent surgery. Treatment advice based on 64-MDCT was correct in 88.2% of patients and when 64-MDCT results would have been known 58.8% of diagnostic CAG procedures could have been prevented.

Conclusion

In conclusion, 64-MDCT has a high diagnostic accuracy in detecting bypass graft stenosis and occlusions, and 64-MDCT based treatment advice was correct in 88.2% of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CAG:

coronary angiography

GDA:

gastroduodenal artery

GEA:

gastroepiploic artery

LAD:

left anterior descending artery

LCx:

left circumflex artery

LIMA:

left internal mammary artery

LM:

left main

MDCT:

multidetector computed tomography

PCI:

percutaneous intervention procedure

RCA:

right coronary artery

RIMA:

right internal mammary artery

SD:

standard deviation

References

  1. Cameron AA, Davis KB, Rogers WJ (1995) Recurrence of angina after coronary artery bypass surgery: predictors and prognosis (CASS Registry). Coronary Artery Surgery Study. J Am Coll Cardiol 26(4):895–899

    Article  PubMed  CAS  Google Scholar 

  2. Barner HB, Sundt TM III, Bailey M, Zang Y (2001) Midterm results of complete arterial revascularization in more than 1,000 patients using an internal thoracic artery/radial artery T graft. Ann Surg 234(4):447–452

    Article  PubMed  CAS  Google Scholar 

  3. Fitzgibbon GM, Kafka HP, Leach AJ, Keon WJ, Hooper GD, Burton JR (1996) Coronary bypass graft fate and patient outcome: angiographic follow-up of 5,065 grafts related to survival and reoperation in 1,388 patients during 25 years. J Am Coll Cardiol 28(3):616–626

    Article  PubMed  CAS  Google Scholar 

  4. Smith SC Jr, Dove JT, Jacobs AK, Kennedy JW, Kereiakes D, Kern MJ et al (2001) ACC/AHA guidelines of percutaneous coronary interventions (revision of the 1993 PTCA guidelines)–executive summary. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (committee to revise the 1993 guidelines for percutaneous transluminal coronary angioplasty). J Am Coll Cardiol 37(8):2215–2239

    Article  PubMed  Google Scholar 

  5. van Domburg RT, Foley DP, Breeman A, van Herwerden LA, Serruys PW (2002) Coronary artery bypass graft surgery and percutaneous transluminal coronary angioplasty. Twenty-year clinical outcome. Eur Heart J 23(7):543–549

    Article  PubMed  Google Scholar 

  6. Ropers D, Ulzheimer S, Wenkel E, Baum U, Giesler T, Derlien H et al. (2001) Investigation of aortocoronary artery bypass grafts by multislice spiral computed tomography with electrocardiographic-gated image reconstruction. Am J Cardiol 88(7):792–795

    Article  PubMed  CAS  Google Scholar 

  7. Leber AW, Knez A, von Ziegler F, Becker A, Nikolaou K, Paul S et al (2005) Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography: a comparative study with quantitative coronary angiography and intravascular ultrasound. J Am Coll Cardiol 46(1):147–154

    Article  PubMed  Google Scholar 

  8. Leschka S, Alkadhi H, Plass A, Desbiolles L, Grunenfelder J, Marincek B et al (2005) Accuracy of MSCT coronary angiography with 64-slice technology: first experience. Eur Heart J 26(15):1482–1487

    Article  PubMed  Google Scholar 

  9. Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16(1):31–41

    Article  PubMed  CAS  Google Scholar 

  10. Dorgelo J, Willems TP, van Ooijen PM, Panday GF, Boonstra PW, Zijlstra F et al (2005) A 16-slice multidetector computed tomography protocol for evaluation of the gastroepiploic artery grafts in patients after coronary artery bypass surgery. Eur Radiol 15(9):1994–1999

    Article  PubMed  CAS  Google Scholar 

  11. Marano R, Storto ML, Maddestra N, Bonomo L (2004) Non-invasive assessment of coronary artery bypass graft with retrospectively ECG-gated four-row multi-detector spiral computed tomography. Eur Radiol 14(8):1353–1362

    Article  PubMed  Google Scholar 

  12. Yoo KJ, Choi D, Choi BW, Lim SH, Chang BC (2003) The comparison of the graft patency after coronary artery bypass grafting using coronary angiography and multi-slice computed tomography. Eur J Cardiothorac Surg 24(1):86–91

    Article  PubMed  Google Scholar 

  13. Anders K, Baum U, Schmid M, Ropers D, Schmid A, Pohle K et al (2006) Coronary artery bypass graft (CABG) patency: assessment with high-resolution submillimeter 16-slice multidetector-row computed tomography (MDCT) versus coronary angiography. Eur J Radiol 57(3):336–344

    Article  PubMed  Google Scholar 

  14. Chiurlia E, Menozzi M, Ratti C, Romagnoli R, Modena MG (2005) Follow-up of coronary artery bypass graft patency by multislice computed tomography. Am J Cardiol 95(9):1094–1097

    Article  PubMed  Google Scholar 

  15. Kamiya H, Ushijima T, Ikeda C, Watanabe G (2004) Gastroepiploic artery graft angiography via brachial approach using a Yumiko catheter. Catheter Cardiovasc Interv 61(3):350–353

    Article  PubMed  Google Scholar 

  16. Bergsma TM, Grandjean JG, Voors AA, Boonstra PW, den Heyer P, Ebels T (1998) Low recurrence of angina pectoris after coronary artery bypass graft surgery with bilateral internal thoracic and right gastroepiploic arteries. Circulation 97(24):2402–2405

    PubMed  CAS  Google Scholar 

  17. Hirose H, Amano A, Takanashi S, Takahashi A (2002) Coronary artery bypass grafting using the gastroepiploic artery in 1,000 patients. Ann Thorac Surg 73(5):1371–1379

    Article  PubMed  Google Scholar 

  18. Isshiki T, Yamaguchi T, Nakamura M, Saeki F, Itaoka Y, Nagahara T et al (1990) Postoperative angiographic evaluation of gastroepiploic artery grafts: technical considerations and short-term patency. Cathet Cardiovasc Diagn 21(4):233–238

    Article  PubMed  CAS  Google Scholar 

  19. Hausleiter J, Meyer T, Hadamitzky M, Huber E, Zankl M, Martinoff S et al (2006) Radiation dose estimates from cardiac multislice computed tomography in daily practice: impact of different scanning protocols on effective dose estimates. Circulation 113(10):1305–1310

    Article  PubMed  Google Scholar 

  20. Mollet NR, Cademartiri F (2005) Computed tomography assessment of coronary bypass grafts: ready to replace conventional angiography?. Int J Cardiovasc Imaging 21(4):453–454

    Article  PubMed  Google Scholar 

  21. Zanzonico P, Rothenberg LN, Strauss HW (2006) Radiation exposure of computed tomography and direct intracoronary angiography: risk has its reward. J Am Coll Cardiol 47(9):1846–1849

    Article  PubMed  Google Scholar 

  22. Flohr TG, McCollough CH, Bruder H, Petersilka M, Gruber K, Suss C et al (2006) First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 16(2):256–268

    Article  PubMed  Google Scholar 

  23. Johnson TR, Nikolaou K, Wintersperger BJ, Leber AW, von Ziegler F, Rist C et al (2006) Dual-source CT cardiac imaging: initial experience. Eur Radiol 16(7):1409–1415

    Article  PubMed  Google Scholar 

  24. Gillinov AM, Casselman FP, Lytle BW, Blackstone EH, Parsons EM, Loop FD et al (1999) Injury to a patent left internal thoracic artery graft at coronary reoperation. Ann Thorac Surg 67(2):382–386

    Article  PubMed  CAS  Google Scholar 

  25. Aviram G, Sharony R, Kramer A, Nesher N, Loberman D, Ben Gal Y et al (2005) Modification of surgical planning based on cardiac multidetector computed tomography in reoperative heart surgery. Ann Thorac Surg 79(2):589–595

    Article  PubMed  Google Scholar 

  26. Gasparovic H, Rybicki FJ, Millstine J, Unic D, Byrne JG, Yucel K et al (2005) Three dimensional computed tomographic imaging in planning the surgical approach for redo cardiac surgery after coronary revascularization. Eur J Cardiothorac Surg 28(2):244–249

    Article  PubMed  Google Scholar 

  27. Gilkeson RC, Markowitz AH, Ciancibello L (2003) Multisection CT evaluation of the reoperative cardiac surgery patient. Radiographics 23 Spec No:S3–S17

  28. Fernandez GC (2005) Bypass graft imaging and coronary anomalies in MDCT. Eur Radiol 15(Suppl 2):B59–B61

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. EJK Noach for her assistance in the preparation of the manuscript and WGJ Tukker for his technical advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Dikkers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dikkers, R., Willems, T.P., Tio, R.A. et al. The benefit of 64-MDCT prior to invasive coronary angiography in symptomatic post-CABG patients. Int J Cardiovasc Imaging 23, 369–377 (2007). https://doi.org/10.1007/s10554-006-9170-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-006-9170-z

Keywords

Navigation