Skip to main content

Advertisement

Log in

The clinical consequences of hemizygosity across 2 MB of 10q23 are restricted to Cowden syndrome

  • Brief Report
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Cowden syndrome is caused by germline mutations in PTEN and clinically characterized by hamartomas, macrocephaly, classic dermatologic stigmata, and an estimated 85 % lifetime risk of female breast cancer. A young woman with macrocephaly, tricholemmomas, AV malformations, and mammary papillomatosis was found to be hemizygous for PTEN in her germline DNA. Using MLPA, comparative genomic hybridization, and DNA sequencing, we identified a 2-Mb deletion in chromosome 10 spanning 344-kb centromeric and 1.7-Mb telomeric of PTEN. Her father who has a clinical history including macrocephaly, Hashimoto’s thyroiditis, colonic polyposis, acral keratoses, and goiter was also found to have the same deletion. In benign breast tissue from the hemizygous female, PTEN protein expression was significantly reduced in luminal and stromal cells but present in the myoepithelium. Compared with a typical papilloma of the breast which had intense cytoplasmic PTEN staining, the majority of the patient’s papilloma had significantly decreased PTEN expression while some cells had mislocalized perinuclear PTEN expression. In addition to PTEN, 22 other protein-coding genes were deleted including two predicted haploinsufficient genes and five additional genes that have previously been associated with hereditary predispositions to certain diseases. However, because all significant clinical features of the proband and her father are common to patients with genetic alterations in PTEN, the other 22 hemizygous protein-coding genes appear to be haplosufficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Liaw D, Marsh DJ, Li J, Dahia PLM, Wang SI, Zheng Z, Bose S, Call KM, Tsou HC, Peacocke M, Eng C, Parsons R (1997) Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat Genet 16:64–67

    Article  PubMed  CAS  Google Scholar 

  2. Nelen MR, van Staveren WCG, Peeters EAJ, Ben Hassel M, Gorlin RJ, Hamm H, Lindboe CF, Fryns J-P, Sijmons RH, Woods DG, Mariman ECM, Padberg GW, Kremer H (1997) Germline mutations in the PTEN/MMAC1 gene in patients with Cowden disease. Hum Mol Genet 6(8):1383–1387. doi:10.1093/hmg/6.8.1383

    Article  PubMed  CAS  Google Scholar 

  3. Chibon F, Primois C, Bressieux J-M, Lacombe D, Lok C, Mauriac L, Taieb A, Longy M (2008) Contribution of PTEN large rearrangements in Cowden disease: a multiplex amplifiable probe hybridisation (MAPH) screening approach. J Med Genet 45(10):657–665. doi:10.1136/jmg.2008.058131

    Article  PubMed  CAS  Google Scholar 

  4. Israeli S, Khamaysi Z, Fuchs-Telem D, Nousbeck J, Bergman R, Sarig O, Sprecher E (2011) A mutation in LIPN, encoding epidermal lipase N, causes a late-onset form of autosomal-recessive congenital ichthyosis. Am J Hum Genet 88(4):482–487. doi:10.1016/j.ajhg.2011.02.011

    Article  PubMed  CAS  Google Scholar 

  5. Gimm O, Chi H, Dahia PLM, Perren A, Hinze R, Komminoth P, Dralle H, Reynolds PR, Eng C (2001) Somatic mutation and germline variants of MINPP1, a phosphatase gene located in proximity to PTEN on 10q23.3, in follicular thyroid carcinomas. J Clin Endocrinol Metab 86(4):1801–1805. doi:10.1210/jc.86.4.1801

    Article  PubMed  CAS  Google Scholar 

  6. Ahmad M, Ul Haque MF, Ahmad W, Abbas H, Haque S, Krakow D, Rimoin DL, Lachman RS, Cohn DH (1998) Distinct, autosomal recessive form of spondyloepimetaphyseal dysplasia segregating in an inbred Pakistani kindred. Am J Med Genet 78(5):468–473. doi:10.1002/(sici)1096-8628(19980806)78:5<468:aid-ajmg13>3.0.co;2-d

    Article  PubMed  CAS  Google Scholar 

  7. Guo D-C, Pannu H, Tran-Fadulu V, Papke CL, Yu RK, Avidan N, Bourgeois S, Estrera AL, Safi HJ, Sparks E, Amor D, Ades L, McConnell V, Willoughby CE, Abuelo D, Willing M, Lewis RA, Kim DH, Scherer S, Tung PP, Ahn C, Buja LM, Raman CS, Shete SS, Milewicz DM (2007) Mutations in smooth muscle [alpha]-actin (ACTA2) lead to thoracic aortic aneurysms and dissections. Nat Genet 39(12): 1488–1493. doi:http://www.nature.com/ng/journal/v39/n12/suppinfo/ng.2007.6_S1.html

    Google Scholar 

  8. Guo D-C, Papke CL, Tran-Fadulu V, Regalado ES, Avidan N, Johnson RJ, Kim DH, Pannu H, Willing MC, Sparks E, Pyeritz RE, Singh MN, Dalman RL, Grotta JC, Marian AJ, Boerwinkle EA, Frazier LQ, LeMaire SA, Coselli JS, Estrera AL, Safi HJ, Veeraraghavan S, Muzny DM, Wheeler DA, Willerson JT, Yu RK, Shete SS, Scherer SE, Raman CS, Buja LM, Milewicz DM (2009) Mutations in smooth muscle alpha-actin (ACTA2) cause coronary artery disease, stroke, and moyamoya disease, along with thoracic aortic disease. Am J Hum Genet 84(5):617–627. doi:10.1016/j.ajhg.2009.04.007

    Article  PubMed  CAS  Google Scholar 

  9. Anderson RA, Byrum RS, Coates PM, Sando GN (1994) Mutations at the lysosomal acid cholesteryl ester hydrolase gene locus in Wolman disease. Proc Natl Acad Sci 91(7):2718–2722

    Article  PubMed  CAS  Google Scholar 

  10. Pagani F, Garcia R, Pariyarath R, Stuani C, Gridelli B, Paone G, BaraMe FE (1996) Expression of lysosomal acid lipase mutants detected in three patients with cholesteryl ester storage disease. Hum Mol Genet 5(10):1611–1617. doi:10.1093/hmg/5.10.1611

    Article  PubMed  CAS  Google Scholar 

  11. Kloeckener-Gruissem B, Vandekerckhove K, Nürnberg G, Neidhardt J, Zeitz C, Nürnberg P, Schipper I, Berger W (2008) Mutation of solute carrier SLC16A12 associates with a syndrome combining juvenile cataract with microcornea and renal glucosuria. Am J Hum Genet 82(3):772–779. doi:10.1016/j.ajhg.2007.12.013

    Article  PubMed  CAS  Google Scholar 

  12. Tan M-H, Mester J, Peterson C, Yang Y, Chen J-L, Rybicki LA, Milas K, Pederson H, Remzi B, Orloff MS, Eng C (2011) A clinical scoring system for selection of patients for PTEN mutation testing is proposed on the basis of a prospective study of 3042 probands. Am J Hum Genet 88(1):42–56. doi:10.1016/j.ajhg.2010.11.013

    Article  PubMed  CAS  Google Scholar 

  13. Tan M-H, Mester JL, Ngeow J, Rybicki LA, Orloff MS, Eng C (2012) Lifetime cancer risks in individuals with germline PTEN mutations. Clin Cancer Res 18(2):400–407. doi:10.1158/1078-0432.ccr-11-2283

    Article  PubMed  CAS  Google Scholar 

  14. Orloff MS, Eng C (2008) Genetic and phenotypic heterogeneity in the PTEN hamartoma tumour syndrome. Oncogene 27(41):5387–5397

    Article  PubMed  CAS  Google Scholar 

  15. Farooq A, Walker LJ, Bowling J, Audisio RA (2010) Cowden syndrome. Cancer Treat Rev 36(8):577–583

    Article  PubMed  CAS  Google Scholar 

  16. Alimonti A, Carracedo A, Clohessy JG, Trotman LC, Nardella C, Egia A, Salmena L, Sampieri K, Haveman WJ, Brogi E, Richardson AL, Zhang J, Pandolfi PP (2010) Subtle variations in Pten dose determine cancer susceptibility. Nat Genet 42(5): 454–458. doi:http://www.nature.com/ng/journal/v42/n5/suppinfo/ng.556_S1.html

    Google Scholar 

  17. Schrager CA, Schneider D, Gruener AC, Tsou HC, Peacocke M (1998) Clinical and pathological features of breast disease in Cowden’s syndrome: an underrecognized syndrome with an increased risk of breast cancer. Hum Pathol 29(1):47–53

    Article  PubMed  CAS  Google Scholar 

  18. Dahia PM, Gimm O, Chi H, Marsh DJ, Reynolds PR, Eng C (2000) Absence of germline mutations in MINPP1, a phosphatase encoding gene centromeric of PTEN, in patients with Cowden and Bannayan-Riley- Ruvalcaba syndrome without germlinePTEN mutations. J Med Genet 37(9):715–717. doi:10.1136/jmg.37.9.715

    Article  PubMed  CAS  Google Scholar 

  19. Huang N, Lee I, Marcotte EM, Hurles ME (2010) Characterising and predicting haploinsufficiency in the human genome. PLoS Genet 6(10):e1001154. doi:10.1371/journal.pgen.1001154

    Article  PubMed  Google Scholar 

  20. Delnatte C, Sanlaville D, Mougenot J-F, Vermeesch J-R, Houdayer C, Blois M-Cd, Genevieve D, Goulet O, Fryns J-P, Jaubert F, Vekemans M, Lyonnet S, Romana S, Eng C, Stoppa-Lyonnet D (2006) Contiguous gene deletion within chromosome arm 10q is associated with juvenile polyposis of infancy, reflecting cooperation between the BMPR1A and PTEN tumor-suppressor genes. Am J Hum Genet 78(6):1066–1074. doi:10.1086/504301

    Article  PubMed  CAS  Google Scholar 

  21. Sweet K, Willis J, Zhou X-P, Gallione C, Sawada T, Alhopuro P, Khoo SK, Patocs A, Martin C, Bridgeman S, Heinz J, Pilarski R, Lehtonen R, Prior TW, Frebourg T, Teh BT, Marchuk DA, Aaltonen LA, Eng C (2005) Molecular classification of patients with unexplained hamartomatous and hyperplastic polyposis. JAMA, J Am Med Assoc 294(19):2465–2473. doi:10.1001/jama.294.19.2465

    Article  CAS  Google Scholar 

  22. Zhou X-P, Waite KA, Pilarski R, Hampel H, Fernandez MJ, Bos C, Dasouki M, Feldman GL, Greenberg LA, Ivanovich J, Matloff E, Patterson A, Pierpont ME, Russo D, Nassif NT, Eng C (2003) Germline PTEN promoter mutations and deletions in Cowden/Bannayan-Riley-Ruvalcaba syndrome result in aberrant PTEN protein and dysregulation of the phosphoinositol-3-kinase/Akt pathway. Am J Hum Genet 73(2):404–411. doi:10.1086/377109

    Article  PubMed  CAS  Google Scholar 

  23. Tan W-H, Baris HN, Burrows PE, Robson CD, Alomari AI, Mulliken JB, Fishman SJ, Irons MB (2007) The spectrum of vascular anomalies in patients with PTEN mutations: implications for diagnosis and management. J Med Genet 44(9):594–602. doi:10.1136/jmg.2007.048934

    Article  PubMed  CAS  Google Scholar 

  24. Haaksma CJ, Schwartz RJ, Tomasek JJ (2011) Myoepithelial cell contraction and milk ejection are impaired in mammary glands of mice lacking smooth muscle alpha-actin. Biol Reprod 85(1):13–21. doi:10.1095/biolreprod.110.090639

    Article  PubMed  CAS  Google Scholar 

  25. Xu J, Li G, Wang P, Velazquez H, Yao X, Li Y, Wu Y, Peixoto A, Crowley S, Desir GV (2005) Renalase is a novel, soluble monoamine oxidase that regulates cardiac function and blood pressure. J Clin Investig 115(5):1275–1280

    PubMed  CAS  Google Scholar 

  26. Zhao Q, Fan Z, He J, Chen S, Li H, Zhang P, Wang L, Hu D, Huang J, Qiang B, Gu D (2007) Renalase gene is a novel susceptibility gene for essential hypertension: a two-stage association study in northern Han Chinese population. J Mol Med 85(8):877–885. doi:10.1007/s00109-006-0151-4

    Article  PubMed  CAS  Google Scholar 

  27. Farzaneh-Far R, Desir GV, Na B, Schiller NB, Whooley MA (2010) A functional polymorphism in renalase (Glu37Asp) is associated with cardiac hypertrophy, dysfunction, and ischemia: data from the heart and soul study. PLoS ONE 5(10):e13496. doi:10.1371/journal.pone.0013496

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Euhus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewis, C.M., Bu, D., Sarode, V. et al. The clinical consequences of hemizygosity across 2 MB of 10q23 are restricted to Cowden syndrome. Breast Cancer Res Treat 136, 911–918 (2012). https://doi.org/10.1007/s10549-012-2322-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-012-2322-z

Keywords

Navigation