Skip to main content

Advertisement

Log in

Density of tumour stroma is correlated to outcome after adoptive transfer of CD4+ and CD8+ T cells in a murine mammary carcinoma model

  • Brief Report
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Adoptive immunotherapy shows promise for the treatment of cancer; however, partial or mixed responses remain common outcomes due to the heterogeneity of tumours. We studied three murine mammary tumour lines that express an ovalbumin-tagged version of HER-2/neu and reproducibly undergo complete regression (CR), partial regression (PR), or progressive disease (PD) after adoptive transfer of ovalbumin-specific CD8+ (OT-I) and CD4+ (OT-II) T cells. The three tumour lines were implanted in immunocompetent C57Bl/6 host mice, and established tumours were treated by adoptive transfer of naive OT-I and OT-II T cells. Tumours of the CR and PR classes triggered almost indistinguishable T cell responses in terms of activation, proliferation, trafficking to the tumour site, infiltration of tumour stroma, and intratumoural T cell proliferation; however, tumours of the PR class showed reduced infiltration of tumour epithelium by donor T cells. PD responses were associated with early impairment of T cell activation and proliferation in draining lymph node, followed by negligible infiltration of tumour tissue by donor T cells. Histopathological determinants of outcome were investigated through an unsupervised analysis of 64 untreated tumours representing the three response classes. Tumours of the CR class had proportionately more stroma, which had a looser, more collagen-rich histological appearance. Thus, the amount and composition of tumour stroma distinguished successfully (CR) from unsuccessful (PR or PD) outcomes after adoptive T cell transfer, a finding that might facilitate the design of immunotherapy trials for human breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, Topalian SL, Sherry R, Restifo NP, Hubicki AM et al (2002) Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298(5594):850–854

    Article  PubMed  CAS  Google Scholar 

  2. Kawaoka T, Oka M, Takashima M, Ueno T, Yamamoto K, Yahara N, Yoshino S, Hazama S (2008) Adoptive immunotherapy for pancreatic cancer: cytotoxic T lymphocytes stimulated by the MUC1-expressing human pancreatic cancer cell line YPK-1. Oncol Rep 20(1):155–163

    PubMed  Google Scholar 

  3. Kondo H, Hazama S, Kawaoka T, Yoshino S, Yoshida S, Tokuno K, Takashima M, Ueno T, Hinoda Y, Oka M (2008) Adoptive immunotherapy for pancreatic cancer using MUC1 peptide-pulsed dendritic cells and activated T lymphocytes. Anticancer Res 28(1B):379–387

    PubMed  CAS  Google Scholar 

  4. Quintarelli C, Dotti G, De Angelis B, Hoyos V, Mims M, Luciano L, Heslop HE, Rooney CM, Pane F, Savoldo B (2008) Cytotoxic T lymphocytes directed to the preferentially expressed antigen of melanoma (PRAME) target chronic myeloid leukemia. Blood 112(5):1876–1885

    Article  PubMed  CAS  Google Scholar 

  5. Robbins PF, Dudley ME, Wunderlich J, El-Gamil M, Li YF, Zhou J, Huang J, Powell DJ Jr, Rosenberg SA (2004) Cutting edge: persistence of transferred lymphocyte clonotypes correlates with cancer regression in patients receiving cell transfer therapy. J Immunol 173(12):7125–7130

    PubMed  CAS  Google Scholar 

  6. Rosenberg SA, Dudley ME, Restifo NP (2008) Cancer immunotherapy. N Engl J Med 359(10):1072

    Article  PubMed  CAS  Google Scholar 

  7. Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME (2008) Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer 8(4):299–308

    Article  PubMed  CAS  Google Scholar 

  8. Rosenberg SA, Dudley ME (2004) Cancer regression in patients with metastatic melanoma after the transfer of autologous antitumor lymphocytes. Proc Natl Acad Sci U S A 101(Suppl 2):14639–14645

    Article  PubMed  CAS  Google Scholar 

  9. Dudley ME, Wunderlich JR, Yang JC, Sherry RM, Topalian SL, Restifo NP, Royal RE, Kammula U, White DE, Mavroukakis SA et al (2005) Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol 23(10):2346–2357

    Article  PubMed  CAS  Google Scholar 

  10. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, Royal RE, Topalian SL, Kammula US, Restifo NP et al (2006) Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314(5796):126–129

    Article  PubMed  CAS  Google Scholar 

  11. Dudley ME, Yang JC, Sherry R, Hughes MS, Royal R, Kammula U, Robbins PF, Huang J, Citrin DE, Leitman SF et al (2008) Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol 26(32):5233–5239

    Article  PubMed  CAS  Google Scholar 

  12. Gajewski TF (2007) Failure at the effector phase: immune barriers at the level of the melanoma tumor microenvironment. Clin Cancer Res 13(18 Pt 1):5256–5261

    Article  PubMed  CAS  Google Scholar 

  13. Frey AB, Monu N (2008) Signaling defects in anti-tumor T cells. Immunol Rev 222:192–205

    Article  PubMed  CAS  Google Scholar 

  14. Nelson BH (2008) The impact of T-cell immunity on ovarian cancer outcomes. Immunol Rev 222:101–116

    Article  PubMed  CAS  Google Scholar 

  15. Li X, Ye F, Chen H, Lu W, Wan X, Xie X (2007) Human ovarian carcinoma cells generate CD4(+)CD25(+) regulatory T cells from peripheral CD4(+)CD25(-) T cells through secreting TGF-beta. Cancer Lett 253(1):144–153

    Google Scholar 

  16. Kobayashi H, Boelte KC, Lin PC (2007) Endothelial cell adhesion molecules and cancer progression. Curr Med Chem 14(4):377–386

    Article  PubMed  CAS  Google Scholar 

  17. Wu TC (2007) The role of vascular cell adhesion molecule-1 in tumor immune evasion. Cancer Res 67(13):6003–6006

    Article  PubMed  CAS  Google Scholar 

  18. Chen ML, Pittet MJ, Gorelik L, Flavell RA, Weissleder R, von Boehmer H, Khazaie K (2005) Regulatory T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF-beta signals in vivo. Proc Natl Acad Sci U S A 102(2):419–424

    Article  PubMed  CAS  Google Scholar 

  19. Mustea A, Konsgen D, Braicu EI, Pirvulescu C, Sun P, Sofroni D, Lichtenegger W, Sehouli J (2006) Expression of IL-10 in patients with ovarian carcinoma. Anticancer Res 26(2C):1715–1718

    PubMed  CAS  Google Scholar 

  20. Youn JI, Nagaraj S, Collazo M, Gabrilovich DI (2008) Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol 181(8):5791–5802

    PubMed  CAS  Google Scholar 

  21. Le Floc’h A, Jalil A, Vergnon I, Le Maux Chansac B, Lazar V, Bismuth G, Chouaib S, Mami-Chouaib F (2007) Alpha E beta 7 integrin interaction with E-cadherin promotes antitumor CTL activity by triggering lytic granule polarization and exocytosis. J Exp Med 204(3):559–570

    Article  PubMed  CAS  Google Scholar 

  22. Peggs KS, Quezada SA, Allison JP (2008) Cell intrinsic mechanisms of T-cell inhibition and application to cancer therapy. Immunol Rev 224:141–165

    Article  PubMed  CAS  Google Scholar 

  23. Cronin SJ, Penninger JM (2007) From T-cell activation signals to signaling control of anti-cancer immunity. Immunol Rev 220:151–168

    Article  PubMed  CAS  Google Scholar 

  24. Keilholz U (2008) CTLA-4: negative regulator of the immune response and a target for cancer therapy. J Immunother 31(5):431–439

    Article  PubMed  CAS  Google Scholar 

  25. Basanta D, Strand DW, Lukner RB, Franco OE, Cliffel DE, Ayala GE, Hayward SW, Anderson AR (2009) The role of transforming growth factor-beta-mediated tumor-stroma interactions in prostate cancer progression: an integrative approach. Cancer Res 69(17):7111–7120

    Article  PubMed  CAS  Google Scholar 

  26. Kischel P, Waltregny D, Dumont B, Turtoi A, Greffe Y, Kirsch S, De Pauw E, Castronovo V (2009) Versican overexpression in human breast cancer lesions: known and new isoforms for stromal tumor targeting. Int J Cancer. doi:10.1002/ijc.24812

  27. Eng C, Leone G, Orloff MS, Ostrowski MC (2009) Genomic alterations in tumor stroma. Cancer Res 69(17):6759–6764

    Article  PubMed  CAS  Google Scholar 

  28. Zhang B, Bowerman NA, Salama JK, Schmidt H, Spiotto MT, Schietinger A, Yu P, Fu YX, Weichselbaum RR, Rowley DA et al (2007) Induced sensitization of tumor stroma leads to eradication of established cancer by T cells. J Exp Med 204(1):49–55

    Article  PubMed  CAS  Google Scholar 

  29. Yu P, Rowley DA, Fu YX, Schreiber H (2006) The role of stroma in immune recognition and destruction of well-established solid tumors. Curr Opin Immunol 18(2):226–231

    Article  PubMed  CAS  Google Scholar 

  30. Spiotto MT, Schreiber H (2005) Rapid destruction of the tumor microenvironment by CTLs recognizing cancer-specific antigens cross-presented by stromal cells. Cancer Immun 5:8

    PubMed  Google Scholar 

  31. Spiotto MT, Yu P, Rowley DA, Nishimura MI, Meredith SC, Gajewski TF, Fu YX, Schreiber H (2002) Increasing tumor antigen expression overcomes “ignorance” to solid tumors via crosspresentation by bone marrow-derived stromal cells. Immunity 17(6):737–747

    Article  PubMed  CAS  Google Scholar 

  32. Zalatnai A (2006) Molecular aspects of stromal-parenchymal interactions in malignant neoplasms. Curr Mol Med 6(6):685–693

    Article  PubMed  CAS  Google Scholar 

  33. Chung LW, Baseman A, Assikis V, Zhau HE (2005) Molecular insights into prostate cancer progression: the missing link of tumor microenvironment. J Urol 173(1):10–20

    PubMed  Google Scholar 

  34. Leber MF, Efferth T (2009) Molecular principles of cancer invasion and metastasis (review). Int J Oncol 34(4):881–895

    PubMed  CAS  Google Scholar 

  35. Morrissey C, Vessella RL (2007) The role of tumor microenvironment in prostate cancer bone metastasis. J Cell Biochem 101(4):873–886

    Article  PubMed  CAS  Google Scholar 

  36. Radisky ES, Radisky DC (2007) Stromal induction of breast cancer: inflammation and invasion. Rev Endocr Metab Disord 8(3):279–287

    Article  PubMed  Google Scholar 

  37. Wall EM, Milne K, Martin ML, Watson PH, Theiss P, Nelson BH (2007) Spontaneous mammary tumors differ widely in their inherent sensitivity to adoptively transferred T cells. Cancer Res 67(13):6442–6450

    Article  PubMed  CAS  Google Scholar 

  38. Hogquist KA, Jameson SC, Heath WR, Howard JL, Bevan MJ, Carbone FR (1994) T cell receptor antagonist peptides induce positive selection. Cell 76(1):17–27

    Article  PubMed  CAS  Google Scholar 

  39. Li B, Murphy KL, Laucirica R, Kittrell F, Medina D, Rosen JM (1998) A transgenic mouse model for mammary carcinogenesis. Oncogene 16:997–1007

    Article  PubMed  CAS  Google Scholar 

  40. Yang T, Martin ML, Nielsen JS, Milne K, Wall EM, Lin W, Watson PH, Nelson BH (2009) Mammary tumors with diverse immunological phenotypes show differing sensitivity to adoptively transferred CD8+ T cells lacking the Cbl-b gene. Cancer Immunol Immunother 58(11):1867–1877

    Article  CAS  Google Scholar 

  41. Pinzon-Charry A, Maxwell T, Lopez JA (2005) Dendritic cell dysfunction in cancer: a mechanism for immunosuppression. Immunol Cell Biol 83(5):451–461

    Article  PubMed  CAS  Google Scholar 

  42. Dumitriu IE, Dunbar DR, Howie SE, Sethi T, Gregory CD (2009) Human dendritic cells produce TGF-beta 1 under the influence of lung carcinoma cells and prime the differentiation of CD4+CD25+Foxp3+ regulatory T cells. J Immunol 182(5):2795–2807

    Article  PubMed  CAS  Google Scholar 

  43. Gabrilovich D (2004) Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol 4(12):941–952

    Article  PubMed  CAS  Google Scholar 

  44. Lee SY, Choi HK, Lee KJ, Jung JY, Hur GY, Jung KH, Kim JH, Shin C, Shim JJ, In KH et al (2009) The immune tolerance of cancer is mediated by IDO that is inhibited by COX-2 inhibitors through regulatory T cells. J Immunother 32(1):22–28

    Article  PubMed  CAS  Google Scholar 

  45. Ahmadi M, Emery DC, Morgan DJ (2008) Prevention of both direct and cross-priming of antitumor CD8+ T-cell responses following overproduction of prostaglandin E2 by tumor cells in vivo. Cancer Res 68(18):7520–7529

    Article  PubMed  CAS  Google Scholar 

  46. Chamoto K, Takeshima T, Wakita D, Ohkuri T, Ashino S, Omatsu T, Shirato H, Kitamura H, Togashi Y, Nishimura T (2009) Combination immunotherapy with radiation and CpG-based tumor vaccination for the eradication of radio- and immuno-resistant lung carcinoma cells. Cancer Sci 100(5):934–939

    Article  PubMed  CAS  Google Scholar 

  47. Vollmer J, Krieg AM (2009) Immunotherapeutic applications of CpG oligodeoxynucleotide TLR9 agonists. Adv Drug Deliv Rev 61(3):195–204

    Article  PubMed  CAS  Google Scholar 

  48. Jurk M, Vollmer J (2007) Therapeutic applications of synthetic CpG oligodeoxynucleotides as TLR9 agonists for immune modulation. BioDrugs 21(6):387–401

    Article  PubMed  CAS  Google Scholar 

  49. Phan V, Disis ML (2008) Tumor stromal barriers to the success of adoptive T cell therapy. Cancer Immunol Immunother 57(2):281–283

    Article  PubMed  Google Scholar 

  50. Quezada SA, Peggs KS, Simpson TR, Shen Y, Littman DR, Allison JP (2008) Limited tumor infiltration by activated T effector cells restricts the therapeutic activity of regulatory T cell depletion against established melanoma. J Exp Med 205(9):2125–2138

    Article  PubMed  CAS  Google Scholar 

  51. Garbi N, Arnold B, Gordon S, Hammerling GJ, Ganss R (2004) CpG motifs as proinflammatory factors render autochthonous tumors permissive for infiltration and destruction. J Immunol 172(10):5861–5869

    PubMed  CAS  Google Scholar 

  52. Boissonnas A, Fetler L, Zeelenberg IS, Hugues S, Amigorena S (2007) In vivo imaging of cytotoxic T cell infiltration and elimination of a solid tumor. J Exp Med 204(2):345–356

    Article  PubMed  CAS  Google Scholar 

  53. Blankenstein T (2005) The role of tumor stroma in the interaction between tumor and immune system. Curr Opin Immunol 17(2):180–186

    Article  PubMed  CAS  Google Scholar 

  54. Mrass P, Kinjyo I, Ng LG, Reiner SL, Pure E, Weninger W (2008) CD44 mediates successful interstitial navigation by killer T cells and enables efficient antitumor immunity. Immunity 29(6):971–985

    Article  PubMed  CAS  Google Scholar 

  55. Fisher DT, Chen Q, Appenheimer MM, Skitzki J, Wang WC, Odunsi K, Evans SS (2006) Hurdles to lymphocyte trafficking in the tumor microenvironment: implications for effective immunotherapy. Immunol Invest 35(3–4):251–277

    Article  PubMed  CAS  Google Scholar 

  56. Lugade AA, Sorensen EW, Gerber SA, Moran JP, Frelinger JG, Lord EM (2008) Radiation-induced IFN-gamma production within the tumor microenvironment influences antitumor immunity. J Immunol 180(5):3132–3139

    PubMed  CAS  Google Scholar 

  57. Obeid M, Panaretakis T, Tesniere A, Joza N, Tufi R, Apetoh L, Ghiringhelli F, Zitvogel L, Kroemer G (2007) Leveraging the immune system during chemotherapy: moving calreticulin to the cell surface converts apoptotic death from “silent” to immunogenic. Cancer Res 67(17):7941–7944

    Article  PubMed  CAS  Google Scholar 

  58. Zhang T, Herlyn D (2009) Combination of active specific immunotherapy or adoptive antibody or lymphocyte immunotherapy with chemotherapy in the treatment of cancer. Cancer Immunol Immunother 58(4):475–492

    Article  PubMed  CAS  Google Scholar 

  59. Lake RA, Robinson BW (2005) Immunotherapy and chemotherapy–a practical partnership. Nat Rev Cancer 5(5):397–405

    Article  PubMed  CAS  Google Scholar 

  60. Emens LA (2008) Chemotherapy and tumor immunity: an unexpected collaboration. Front Biosci 13:249–257

    Article  PubMed  CAS  Google Scholar 

  61. Mothersill C, Seymour CB (2004) Radiation-induced bystander effects–implications for cancer. Nat Rev Cancer 4(2):158–164

    PubMed  CAS  Google Scholar 

  62. Hirtenlehner K, Pec M, Kubista E, Singer CF (2002) Influences of stroma-derived growth factors on the cytokine expression pattern of human breast cancer cell lines. Arch Gynecol Obstet 266(2):108–113

    Article  PubMed  CAS  Google Scholar 

  63. Yoshida S, Harada T, Iwabe T, Taniguchi F, Fujii A, Sakamoto Y, Yamauchi N, Shiota G, Terakawa N (2002) Induction of hepatocyte growth factor in stromal cells by tumor-derived basic fibroblast growth factor enhances growth and invasion of endometrial cancer. J Clin Endocrinol Metab 87(5):2376–2383

    Article  PubMed  CAS  Google Scholar 

  64. Augsten M, Hagglof C, Olsson E, Stolz C, Tsagozis P, Levchenko T, Frederick MJ, Borg A, Micke P, Egevad L et al (2009) CXCL14 is an autocrine growth factor for fibroblasts and acts as a multi-modal stimulator of prostate tumor growth. Proc Natl Acad Sci U S A 106(9):3414–3419

    Article  PubMed  Google Scholar 

  65. Dong J, Grunstein J, Tejada M, Peale F, Frantz G, Liang WC, Bai W, Yu L, Kowalski J, Liang X et al (2004) VEGF-null cells require PDGFR alpha signaling-mediated stromal fibroblast recruitment for tumorigenesis. EMBO J 23(14):2800–2810

    Article  PubMed  CAS  Google Scholar 

  66. Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H, Chen H, Omeroglu G, Meterissian S, Omeroglu A et al (2008) Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 14(5):518–527

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Wendy Lin for technical assistance with the mouse colony, and Geoff Martinson and Jeevin Shahi for assistance with genotyping. We also thank Dr. Julie Nielsen, Dr. John Webb, and Darin Wick for helpful discussions and preparation of the figures. This work was supported by the Canadian Institutes for Health Research (MOP-173868), Canadian Breast Cancer Foundation, Michael Smith Foundation for Health Research, Terry Fox New Frontiers Program (018005), and British Columbia Cancer Foundation

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brad H. Nelson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 161 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, M.L., Wall, E.M., Sandwith, E. et al. Density of tumour stroma is correlated to outcome after adoptive transfer of CD4+ and CD8+ T cells in a murine mammary carcinoma model. Breast Cancer Res Treat 121, 753–763 (2010). https://doi.org/10.1007/s10549-009-0559-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-009-0559-y

Keywords

Navigation