Skip to main content

Advertisement

Log in

MUC1* is a determinant of trastuzumab (Herceptin) resistance in breast cancer cells

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

In the United States, 211,000 women are diagnosed each year with breast cancer. Of the 42,000 breast cancer patients who overexpress the HER2 growth factor receptor, <35% are responsive to treatment with the HER2-disabling antibody, called trastuzumab (Herceptin). Despite those statistics, women diagnosed with breast cancer are now tested to determine how much of this important growth factor receptor is present in their tumor because patients whose treatment includes trastuzumab are three-times more likely to survive for at least 5 years and are two-times more likely to survive without a cancer recurrence. Unfortunately, even among the group whose cancers originally respond to trastuzumab, 25% of the metastatic breast cancer patients acquire resistance to trastuzumab within the first year of treatment. Follow-on “salvage” therapies have prolonged life for this group but have not been curative. Thus, it is critically important to understand the mechanisms of trastuzumab resistance and develop therapies that reverse or prevent it. Here, we report that molecular analysis of a cancer cell line that was induced to acquire trastuzumab resistance showed a dramatic increase in the amount of the cleaved form of the MUC1 protein, called MUC1*. We recently reported that MUC1* functions as a growth factor receptor on cancer cells and on embryonic stem cells. Here, we show that treating trastuzumab-resistant cancer cells with a combination of MUC1* antagonists and trastuzumab, reverses the drug resistance. Further, HER2-positive cancer cells that are intrinsically resistant to trastuzumab became trastuzumab-sensitive when treated with MUC1* antagonists and trastuzumab. Additionally, we found that tumor cells that had acquired Herceptin resistance had also acquired resistance to standard chemotherapy agents like Taxol, Doxorubicin, and Cyclophosphamide. Acquired resistance to these standard chemotherapy drugs was also reversed by combined treatment with the original drug plus a MUC1* inhibitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Slamon DJ, Godolphin W, Jones LA et al (1989) Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244:707–712. doi:10.1126/science.2470152

    Article  CAS  PubMed  Google Scholar 

  2. Sliwkowski MX (2003) Ready to partner. Nat Struct Biol 10:158–159. doi:10.1038/nsb0303-158

    Article  CAS  PubMed  Google Scholar 

  3. Moasser MM (2007) The oncogene HER2: its signaling and transforming functions and its role in human cancer pathogenesis. Oncogene 26:6469–6487. doi:10.1038/sj.onc.1210477

    Article  CAS  PubMed  Google Scholar 

  4. Hellyer NJ, Kim MS, Koland JG (2001) Heregulin-dependent activation of phosphoinositide 3-kinase and Akt via the ErbB2/ErbB3 co-receptor. J Biol Chem 276:42153–42161. doi:10.1074/jbc.M102079200

    Article  CAS  PubMed  Google Scholar 

  5. Cobleigh MA, Vogel CL, Tripathy D et al (1999) Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2 overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol 17:2639–2648

    CAS  PubMed  Google Scholar 

  6. Slamon DJ, Leyland-Jones B, Shak S et al (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344:783–792. doi:10.1056/NEJM200103153441101

    Article  CAS  PubMed  Google Scholar 

  7. Marty M, Cognetti F, Maraninchi D et al (2005) Randomized phase II trial of the efficacy and safety of trastuzumab combined with docetaxel in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer administered as first-line treatment: the M77001 study group. J Clin Oncol 23:4265–4274. doi:10.1200/JCO.2005.04.173

    Article  CAS  PubMed  Google Scholar 

  8. Romond EH, Perez EA, Bryant J et al (2005) Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 353:1673–1684. doi:10.1056/NEJMoa052122

    Article  CAS  PubMed  Google Scholar 

  9. Burstein HJ, Harris LN, Gelman R et al (2003) Preoperative therapy with trastuzumab and paclitaxel followed by sequential adjuvant Doxorubicin/cyclophosphamide for HER2 overexpressing stage II or III breast cancer: a pilot study. J Clin Oncol 21:46–53. doi:10.1200/JCO.2003.03.124

    Article  CAS  PubMed  Google Scholar 

  10. Vogel CL, Cobleigh MA, Tripathy D et al (2002) Efficacy and safety of trastuzumab as a single agent in first line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol 20:719–726. doi:10.1200/JCO.20.3.719

    Article  CAS  PubMed  Google Scholar 

  11. Montemurro F, Redana S, Nolè F et al (2008) Vinorelbine-based salvage therapy in HER2-positive metastatic breast cancer patients progressing during trastuzumab-containing regimens: a retrospective study. BMC Cancer 8:209–217. doi:10.1186/1471-2407-8-209

    Article  PubMed  Google Scholar 

  12. Geyer CE, Forster J, Lindquist D et al (2006) Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med 355:2733–2743. doi:10.1056/NEJMoa064320

    Article  CAS  PubMed  Google Scholar 

  13. Paik S, Hazan R, Fisher ER et al (1990) Pathologic findings from the national surgical adjuvant breast and bowel project: prognostic significance of erbB-2 protein overexpression in primary breast cancer. J Clin Oncol 8:103–112

    CAS  PubMed  Google Scholar 

  14. Paik S, Bryant J, Tan-Chiu E et al (2000) HER2 and choice of adjuvant chemotherapy for invasive breast cancer: national surgical adjuvant breast and bowel project protocol B-15. J Natl Cancer Inst 92:1991–1998. doi:10.1093/jnci/92.24.1991

    Article  CAS  PubMed  Google Scholar 

  15. Yamauchi H, O’Neill A, Gelman R et al (1997) Prediction of response to antiestrogen therapy in advanced breast cancer patients by pretreatment circulating levels of extracellular domain of HER-2/c-neu protein. J Clin Oncol 15:2518–2525

    CAS  PubMed  Google Scholar 

  16. Harris L, Luftner D, Jager W et al (1999) c-erbB-2 in serum of patients with breast cancer. Int J Biol Markers 14:8–15

    CAS  PubMed  Google Scholar 

  17. Chan CT, Metz MZ, Kane SE (2005) Differential sensitivities of trastuzumab (herceptin)-resistant human breast cancer cells to phosphoinositide-3 kinase (PI-3 K) and epidermal growth factor receptor (EGFR) kinase inhibitors. Breast Cancer Res Treat 91:187–201. doi:10.1007/s10549-004-7715-1

    Article  CAS  PubMed  Google Scholar 

  18. Nagy P, Friedländer E, Tanner M et al (2005) Decreased accessibility and lack of activation of ErbB2 in JIMT-1, a herceptin-resistant, MUC4-expressing breast cancer cell line. Cancer Res 65:473–482

    CAS  PubMed  Google Scholar 

  19. Nahta R, Hung MC, Esteva FJ (2004) The HER-2-targeting antibodies trastuzumab and pertuzumab synergistically inhibit the survival of breast cancer cells. Cancer Res 64:2343–2346. doi:10.1158/0008-5472.CAN-03-3856

    Article  CAS  PubMed  Google Scholar 

  20. Nahta R, Yuan LXH, Zhang B et al (2005) Insulin-like growth factor-1 receptor/human epidermal growth factor receptor heterodimerization contributes to trastuzumab resistance of breast cancer cells. Cancer Res 65:11118–11127. doi:10.1158/0008-5472.CAN-04-3841

    Article  CAS  PubMed  Google Scholar 

  21. Ritter CA, Perez-Torres M, Rinehart C et al (2007) Human breast cancer cells selected for resistance to trastuzumab in vivo overexpress epidermal growth factor receptor and ErbB ligands and remain dependent on the ErbB receptor network. Clin Cancer Res 13:4909–4919. doi:10.1158/1078-0432.CCR-07-0701

    Article  CAS  PubMed  Google Scholar 

  22. Yin L, Huang L, Kufe D (2004) MUC1 oncoprotein activates the FOXO3 a transcription factor in a survival response to oxidative stress. J Biol Chem 279:45721–45727. doi:10.1074/jbc.M408027200

    Article  CAS  PubMed  Google Scholar 

  23. Raina D, Kharbanda S, Kufe D (2004) The MUC1 oncoprotein activates the anti-apoptotic phosphoinositide 3-kinase/Akt and Bcl-xL pathways in rat 3Y1 fibroblasts. J Biol Chem 279:20607–20612. doi:10.1074/jbc.M310538200

    Article  CAS  PubMed  Google Scholar 

  24. Ren J, Agata N, Chen D et al (2004) Human MUC1 carcinoma-associated protein confers resistance to genotoxic anticancer agents. Cancer Cell 5:163–175. doi:10.1016/S1535-6108(04)00020-0

    Article  CAS  PubMed  Google Scholar 

  25. Tsutsumida H, Swanson BJ, Singh PK et al (2006) RNA interference suppression of MUC1 reduces the growth rate and metastatic phenotype of human pancreatic cancer cells. Clin Cancer Res 12:2976–2987. doi:10.1158/1078-0432.CCR-05-1197

    Article  CAS  PubMed  Google Scholar 

  26. Li Y, Liu D, Chen D et al (2003) Human DF3/MUC1 carcinoma-associated protein functions as an oncogene. Oncogene 22:6107–6110. doi:10.1038/sj.onc.1206732

    Article  CAS  PubMed  Google Scholar 

  27. Mahanta S, Fessler SP, Park J, Bamdad C (2008) A minimal fragment of MUC1 mediates growth of cancer cells. PLoS One 3:e2054–e2065. doi:10.1371/journal.pone.0002054

    Article  PubMed  Google Scholar 

  28. Hikita ST, Kosik KS, Clegg DO, Bamdad C (2008) MUC1* mediates the growth of human pluripotent stem cells. PLoS One 3:e3312–e3325. doi:10.1371/journal.pone.0003312

    Article  PubMed  Google Scholar 

  29. Scotti ML, Langenheim JF, Tomblyn S et al (2008) Additive effects of a prolactin receptor antagonist, G129R, and herceptin on inhibition of HER2-overexpressing breast cancer cells. Breast Cancer Res Treat 111:241–250. doi:10.1007/s10549-007-9789-z

    Article  CAS  PubMed  Google Scholar 

  30. Kauraniemi P, Hautaniemi S, Autio R et al (2004) Effects of herceptin treatment on global gene expression patterns in HER2-amplified and nonamplified breast cancer cell lines. Oncogene 23:1010–1013. doi:10.1038/sj.onc.1207200

    Article  CAS  PubMed  Google Scholar 

  31. Luistro LLIII, Rosinski JA, Bian H et al (2005) Herceptin-refractory ovarian carcinoma cells differentially express genes involved in angiogenesis, invasion and metastasis. Proc Amer Assoc Cancer Res 46:5085 Abstract

    Google Scholar 

  32. Lapointe J, Li C, Higgins JP et al (2004) Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc Natl Acad Sci USA 101:811–816. doi:10.1073/pnas.0304146101

    Article  CAS  PubMed  Google Scholar 

  33. Lesperance S, Popa I, Bachvarova M et al (2006) Gene expression profiling of paired ovarian tumors obtained prior to and following adjuvant chemotherapy: molecular signatures of chemoresistant tumors. Int J Oncol 29:5–24

    CAS  Google Scholar 

  34. Li Y, Yu W-H, Ren J et al (2003) Heregulin targets gamma-catenin to the nucleolus by a mechanism dependent on the DF3/MUC1 oncoprotein. Mol Cancer Res 1:765–775

    CAS  PubMed  Google Scholar 

  35. Nahta R, Esteva FJ (2007) Trastuzumab; triumphs and tribulations. Oncogene 26:3637–3643. doi:10.1038/sj.onc.1210379

    Article  CAS  PubMed  Google Scholar 

  36. Valabrega G, Montemurro F, Aglietta M (2007) Trastuzumab: mechanism of action, resistance and future perspectives in Her2-overexpressing breast cancer. Ann Oncol 18:977–984. doi:10.1093/annonc/mdl475

    Article  CAS  PubMed  Google Scholar 

  37. Vogel CL, Cobleigh MA, Tripathy D et al (2001) First-line herceptin monotherapy in metastatic breast cancer. Oncol 61:37–42. doi:10.1159/000055400

    Article  CAS  Google Scholar 

  38. Price-Schiavi SA, Jepson S, Li P et al (2002) Rat MUC4 (sialomucin complex) reduces binding of anti-ErbB2 antibody to tumor cell surfaces, a potential mechanism for herceptin resistance. Int J Cancer 99:783–791. doi:10.1002/ijc.10410

    Article  CAS  PubMed  Google Scholar 

  39. Harris LN, You F, Schnitt SJ et al (2007) Predictors of resistance to preoperative trastuzumab and vinorelbine for Her2-positive early breast cancer. Clin Cancer Res 13:1198–1207. doi:10.1158/1078-0432.CCR-06-1304

    Article  CAS  PubMed  Google Scholar 

  40. Lu Y, Zi H, Zhao D et al (2001) Insulin like growth factor-1 receptor signaling and resistance to trastuzumab (herceptin). J Natl Cancer Inst 93:1852–1857. doi:10.1093/jnci/93.24.1852

    Article  CAS  PubMed  Google Scholar 

  41. Shattuck JL, Miller JK, Carraway KLIII et al (2008) Met receptor contributes to trastuzumab resistance of Her2-overexpresssing breast cancer cells. Cancer Res 68:1471–1477. doi:10.1158/0008-5472.CAN-07-5962

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cynthia Bamdad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fessler, S.P., Wotkowicz, M.T., Mahanta, S.K. et al. MUC1* is a determinant of trastuzumab (Herceptin) resistance in breast cancer cells. Breast Cancer Res Treat 118, 113–124 (2009). https://doi.org/10.1007/s10549-009-0412-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-009-0412-3

Keywords

Navigation