Skip to main content

Advertisement

Log in

Dietary fiber is associated with serum sex hormones and insulin-related peptides in postmenopausal breast cancer survivors

  • Epidemiology
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Objective To measure the association between dietary fiber intake and eleven hormones and peptides in postmenopausal breast cancer survivors. Methods Intake of fiber from food and supplements was measured two to three years after breast cancer diagnosis in 493 postmenopausal women from three western states. Concurrently, a fasting blood sample was obtained for assay of estrone, estradiol, free estradiol, testosterone, free testosterone, dehydroepiandrosterone sulfate, sex hormone-binding globulin (SHBG), leptin, C-peptide, insulin-like growth factor-1 (IGF1), and IGF-binding protein-3. Adjusted means of these hormones and peptides were calculated for categories of fiber intake. Results High intake of dietary fiber was significantly (≤ 0.05) associated with low serum levels of estradiol and free estradiol and with high serum levels of IGF1. The combination of high dietary fiber intake and use of fiber supplements was additionally associated with low serum levels of C-peptide. The magnitude of the difference in hormone/peptide values, comparing high fiber intake to low fiber intake, varied from 16 to 28%, and the associations were independent of multiple confounding variables. Conclusion High fiber diets may be beneficial to postmenopausal breast cancer survivors due to fiber’s favorable influence on sex hormones and peptides known to affect breast cancer prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Catalano MG, Frairia R, Boccuzzi G, Fortunati N (2005) Sex hormone-binding globulin antagonizes the anti-apoptotic effect of estradiol in breast cancer cells. Mol Cell Endocrinol 230:31–37

    Article  PubMed  CAS  Google Scholar 

  2. Key T, Appleby P, Barnes I, Reeves F (2002) Endogenous sex hormones and breast cancer in postmenopausal women: reanalysis of nine prospective studies. J Natl Cancer Inst 94:606–616

    PubMed  CAS  Google Scholar 

  3. Bruning PF, Bonfrer JM, van Noord PA, Hart AA, de Jong-Bakker M, Nooijen WJ (1992) Insulin resistance and breast-cancer risk. Int J Cancer 52:511–516

    Article  PubMed  CAS  Google Scholar 

  4. Yang G, Lu G, Jin F, Dai Q, Best R, Shu XO, Chen JR, Pan XY, Shrubsole M, Zheng W (2001) Population-based, case-control study of blood C-peptide level and breast cancer risk. Cancer Epidemiol Biomarkers Prev 10:1207–1211

    PubMed  CAS  Google Scholar 

  5. Yu H, Rohan T (2000) Role of the insulin-like growth factor family in cancer development and progression. J Natl Cancer Inst 92:1472–1489

    Article  PubMed  CAS  Google Scholar 

  6. Clemons M, Goss P (2001) Estrogen and the risk of breast cancer. N Engl J Med 344:276–285

    Article  PubMed  CAS  Google Scholar 

  7. Han C, Zhang HT, Du L, Liu X, Jing J, Zhao X, Yang X, Tian B (2005) Serum levels of leptin, insulin, and lipids in relation to breast cancer in China. Endocrine 26:19–24

    Article  PubMed  CAS  Google Scholar 

  8. Vadgama JV, Wu Y, Datta G, Khan H, Chillar R (1999) Plasma insulin-like growth factor-I and serum IGF-binding protein 3 can be associated with the progression of breast cancer, and predict the risk of recurrence and the probability of survival in African-American and Hispanic women. Oncology 57:330–340

    Article  PubMed  CAS  Google Scholar 

  9. Goodwin PJ, Ennis M, Fantus IG, Pritchard KI, Trudeau ME, Koo J, Hood N (2005) Is leptin a mediator of adverse prognostic effects of obesity in breast cancer? J Clin Oncol 23:6037–6042

    Article  PubMed  CAS  Google Scholar 

  10. Goodwin PJ, Ennis M, Pritchard KI, Trudeau ME, Koo J, Madarnas Y, Hartwick W, Hoffman B, Hood N (2002) Fasting insulin and outcome in early-stage breast cancer: results of a prospective cohort study. J Clin Oncol 20:42–51

    Article  PubMed  CAS  Google Scholar 

  11. Adlercruetz H (1990) Western diet and western diseases: some hormonal and biochemical mechanisms and associations. Scand J Clin Lab Invest 201:3–23

    Article  Google Scholar 

  12. Arts CJ, Govers CA, van den Berg H, Wolters MG, van Leeuwen P, Thijssen JH (1991) In vitro binding of estrogens by dietary fiber and the in vivo apparent digestibility tested in pigs. J Steroid Biochem 38:621–628

    Article  CAS  Google Scholar 

  13. Jenkins DJ, Jenkins AL (1985) Dietary fiber and the glycemic response. Proc Soc Exp Biol Med 180:422–431

    PubMed  CAS  Google Scholar 

  14. Ludwig DS, Pereira MA, Kroenke CH, Hilner JE, Van Horn L, Slattery ML, Jacobs DR (1999) Dietary fiber, weight gain, and cardiovascular disease risk factors in young adults. JAMA 282:1539–1546

    Article  PubMed  CAS  Google Scholar 

  15. Potter JG, Coffman KP, Reid RL, Krall JM, Albrink MJ (1981) Effect of test meals of varying dietary fiber content on plasma insulin and glucose response. Am J Clin Nutr 34:328–334

    PubMed  CAS  Google Scholar 

  16. Koh-Banerjee P, Rimm EB (2003) Whole grain consumption and weight gain: a review of the epidemiological evidence, potential mechanisms and opportunities for future research. Proc Nutr Soc 62:25–29

    PubMed  CAS  Google Scholar 

  17. Rock CL, Flatt SW, Thomson CA, Stefanick ML, Newman VA, Jones LA, Natarajan L, Ritenbaugh C, Hollenbach KA, Pierce JP, Chang RJ (2004) Effects of a high-fiber, low-fat diet intervention on serum concentrations of reproductive steroid hormones in women with a history of breast cancer. J Clin Oncol 22:2379–2387

    Article  PubMed  CAS  Google Scholar 

  18. Rose DP, Lubin M, Connolley JM (1997) Effects of diet supplementation with wheat bran on serum estrogen levels in the follicular and luteal phases of the menstrual cycle. Nutrition 13:535–539

    Article  PubMed  CAS  Google Scholar 

  19. Barnard RJ, Gonzalez JH, Liva ME, Ngo TH (2006) Effects of a low-fat, high-fiber diet and exercise program on breast cancer risk factors in vivo and tumor cell growth and apoptosis in vitro. Nutr Cancer 55(1):28–34

    Article  PubMed  CAS  Google Scholar 

  20. Gann PH, Chatterton RT, Gapstur SM, Liu K, Garside D, Giovanazzi S, Thedford K, Van Horn L (2003) The effects of a low-fat/high-fiber diet on sex hormone levels and menstrual cycling in premenopausal women. Cancer 98:1870–1879

    Article  PubMed  CAS  Google Scholar 

  21. McTiernan A, Rajan KB, Tworoger SS, Irwin M, Bernstein L, Baumgartner R, Gilliland F, Stanczyk FZ, Yasui Y, Ballard-Barbash R (2003) Adiposity and sex hormones in postmenopausal breast cancer survivors. J Clin Oncol 21(10):1961–1966

    Article  PubMed  CAS  Google Scholar 

  22. Irwin ML, McTiernan A, Bernstein L, Gilliland FD, Baumgartner R, Baumgartner K, Ballard-Barbash R (2004) Physical activity levels among breast cancer survivors. Med Sci Sports Exerc 36:1484–1491

    PubMed  Google Scholar 

  23. Irwin ML, Crumley D, McTiernan A, Bernstein L, Baumgartner R, Gilliland FD, Kriska A, Ballard-Barbash R (2003) Physical activity levels before and after a diagnosis of breast carcinoma. Cancer 97:1746–1757

    Article  PubMed  Google Scholar 

  24. Sodergard R, Backstrom T, Shanbhag V, Carstensen H (1982) Calculation of free and bound fractions of testosterone and estradiol-17 beta to human plasma proteins at body temperature. J Steroid Biochem 16:801–810

    Article  PubMed  CAS  Google Scholar 

  25. Sparks R, Ulrich CM, Bigler J, Tworoger SS, Yasui Y, Rajan KB, Porter P, Stanczyk FZ, Ballard-Barbash R, Yuan X, Lin MG, McVarish L, Aiello EJ, McTiernan A (2004) UDP-glucoronosyltransferase and sulfotransferase polymorphisms, sex hormone concentrations, and tumor receptor status in breast cancer patients. Breast Cancer Res 6:R488–R498

    Article  PubMed  CAS  Google Scholar 

  26. Patterson RE, Kristal AR, Tinker LF, Carter RA, Bolton MP, Agurs-Collins T (1999) Measurement characteristics of the Women’s Health Initiative food frequency questionnaire. Ann Epidemiol 9:178–187

    Article  PubMed  CAS  Google Scholar 

  27. Irwin ML, McTiernan A, Bernstein L, Gilliland FD, Baumgartner R, Baumgartner K, Ballard-Barbash R (2005) Relationship between obesity and physical activity with c-peptide, leptin, and insulin-like growth factors in breast cancer survivors. Cancer Epidemiol Biomarkers Prev 15:2881–2888

    Article  Google Scholar 

  28. Expert Panel on the Identification, Evaluation, Treatment of Overweight in Adults: Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults: executive summary (1998) Am J Clin Nutr 68:899–917

  29. Kriska A (1997) Modifiable activity questionnaire. Med Sci Sports Exer 29:S73–S78

    Google Scholar 

  30. Jette M, Sidney K, Blumchen G (1990) Metabolic equivalents (METS) in exercise testing, exercise prescription, and evaluation of functional capacity. Clin Cardiol 13:555–565

    Article  PubMed  CAS  Google Scholar 

  31. Fisher B, Costantino JP, Wickerham DL, Redmond CK, Kavanah M, Cronin WM, Vogel V, Robidoux A, Dimitrov N, Atkins J, Daly M, Wieand S, Tan-Chiu E, Ford L, Wolmark N (1998) Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. J Natl Cancer Inst 90(18):1371–1388

    Article  PubMed  CAS  Google Scholar 

  32. Cummings SR, Eckert S, Krueger KA, Grady D, Powles TJ, Cauley JA, Norton L, Nickelsen T, Bjarnason NH, Morrow M, Lippman ME, Black D, Glusman JE, Costa A, Jordan VC (1999) The effect of raloxifene on risk of breast cancer in postmenopausal women: results from the MORE randomized trial. Multiple Outcomes of Raloxifene Evaluation. Jama 281(23):2189–2197

    Article  PubMed  CAS  Google Scholar 

  33. Borugian MJ, Sheps SB, Kim-Sing C, Van Patten C, Potter JD, Dunn B, Gallagher RP, Hislop TG (2004) Insulin, macronutrient intake, and physical activity: are potential indicators of insulin resistance associated with mortality from breast cancer? Cancer Epidemiol Biomarkers Prev 13(7):1163–1172

    PubMed  CAS  Google Scholar 

  34. Arts CJ, Thijssen JH (1992) Effects of wheat bran on blood and tissue hormone levels in adult female rats. Acta Endocrinologica 127:271–278

    PubMed  CAS  Google Scholar 

  35. Kendall ME, Cohen LA (1992) Effect of dietary fiber on mammary tumorigenesis, estrogen metabolism, and lipid excretion in female rats. In Vivo 6:239–245

    PubMed  CAS  Google Scholar 

  36. Rose DP, Goldman M, Connolly JM, Strong LE (1991) High-fiber diet reduces serum estrogen concentrations in premenopausal women. Am J Clin Nutr 54:520–525

    PubMed  CAS  Google Scholar 

  37. Goldin BR, Woods MN, Spiegelman DL, Longcope C, Morrill-LaBrode A, Dwyer JT, Gualtieri LJ, Hertzmark E, Gorbach SL (1994) The effect of dietary fat and fiber on serum estrogen concentrations in premenopausal women under controlled dietary conditions. Cancer 74:1125–1131

    Article  PubMed  CAS  Google Scholar 

  38. Gerstein DE, Woodward-Lopez G, Evans AE, Kelsey K, Drewnowski A (2004) Clarifying concepts about macronutrients’ effects on satiation and satiety. J Am Diet Assoc 104:1151–1153

    Article  PubMed  Google Scholar 

  39. Stephenson GD, Rose DP (2003) Breast cancer and obesity: an update. Nutr and Cancer 45:1–16

    Article  CAS  Google Scholar 

  40. Ngo TH, Barnard RJ, Tymchuk CN, Cohen P, Aronson WJ (2002) Effects of diet and exercise on serum insulin, IGF-1, and IGFBP-1 levels and growth of LNCaP cells in vitro. Cancer Causes Control 13:929–935

    Article  PubMed  Google Scholar 

  41. Kaaks R, Bellati C, Venturelli E, Rinaldi S, Secreto G, Biessy C, Pala V, Sieri S, Berrino F (2003) Effects of dietary intervention on IGF-1 and IGF-binding proteins, and related alterations in sex steroid metabolism: the diet and androgens (DIANA) randomised trial. Eur J Clin Nutr 57:1079–1088

    Article  PubMed  CAS  Google Scholar 

  42. Wu T, Giovannucci E, Pischon T, Hankinson SE, Ma J, Rifai N, Rimm EB (2004) Fructose, glycemic load, and quantity and quality of carbohydrate in relation to plasma C-peptide concentrations in US women. Am J Clin Nutr 80:1043–1049

    PubMed  CAS  Google Scholar 

  43. Jensen MK, Koh-Banerjee P, Franz M, Sampson L, Gronbaek M, Rimm EB (2006) Whole grains, bran, and germ in relation to homocysteine and markers of glycemic control, lipids, and inflammation 1. Am J Clin Nutr 83:275–283

    PubMed  CAS  Google Scholar 

  44. Fung TT, Rimm EB, Spiegelman D, Rifai N, Tofler GH, Willett WC, Hu FB (2001) Associations between dietary patterns and plasma biomarkers of obesity and cardiovascular disease risk. Am J Clin Nutr 73:61–67

    PubMed  CAS  Google Scholar 

  45. Kerver JM, Yang EJ, Bianchi L, Song WO (2003) Dietary patterns associated with risk factors for cardiovascular disease in healthy US adults. Am J Clin Nutr 78:1103–1110

    PubMed  CAS  Google Scholar 

  46. Al-Delaimy WK, Natarajan L, Rock CL, Sun S, Flatt SW, Pierce JP (2006) Insulin-like growth factor I, insulin-like growth factor I binding protein 1, insulin, glucose, and leptin serum levels are not influenced by a reduced-fat, high-fiber diet intervention. Cancer Epidemiol Biomarkers Prev 15(6):1238–1239

    Article  PubMed  CAS  Google Scholar 

  47. Ahn J, Gammon MD, Santella RM, Gaudet MM, Britton JA, Teitelbaum SL, Terry MB, Nowell S, Davis W, Garza C, Neugut AI, Ambrosone CB (2005) Association between breast cancer risk and the catalase genotype, fruit and vegetable consumption, and supplement use. Am J Epidemiol 162:943–952

    Article  PubMed  Google Scholar 

  48. Winer EP, Hudis C, Burstein HJ, Wolff AC, Pritchard KI, Ingle JN, Chlebowski RT, Gelber R, Edge SB, Gralow J, Cobleigh MA, Mamounas EP, Goldstein LJ, Whelan TJ, Powles TJ, Bryant J, Perkins C, Perotti J, Braun S, Langer AS, Browman GP, Somerfield MR (2005) American Society of Clinical Oncology technology assessment on the use of aromatase inhibitors as adjuvant therapy for postmenopausal women with hormone receptor-positive breast cancer: status report 2004. J Clin Oncol 23(3):619–629

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement of financial support

National Cancer Institute contracts N01-CN-75036–20, N01-CN-05228, N01-PC-67010/N01-PC-35139, N01-PC-67007/N01-PC-35138 and N01-PC-67009/N01-PC-35142, and training grant T32 CA09661. A portion of this work was conducted through the Clinical Research Center at the University of Washington and supported by the NIH grant M01-RR-00037. Data collection for the Women’s Contraceptive and Reproductive Experiences Study at the University of Southern California was supported by the National Institute of Child Health and Human Development contract N01-HD-3–3175. Patient identification was supported in part by the California Department of Health Services grant 050Q-8709-S1528.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharon J. Wayne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wayne, S.J., Neuhouser, M.L., Ulrich, C.M. et al. Dietary fiber is associated with serum sex hormones and insulin-related peptides in postmenopausal breast cancer survivors. Breast Cancer Res Treat 112, 149–158 (2008). https://doi.org/10.1007/s10549-007-9834-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-007-9834-y

Keywords

Navigation