Skip to main content
Log in

Observations and Modelling of the Atmospheric Boundary Layer Over Sea-Ice in a Svalbard Fjord

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Sonic anemometer and profile mast measurements made in Wahlenbergfjorden, Svalbard Arctic archipelago, in May 2006 and April 2007 were employed to study the atmospheric boundary layer over sea-ice. The turbulent surface fluxes of momentum and sensible heat were calculated using eddy correlation and gradient methods. The results showed that the literature-based universal functions underestimated turbulent mixing in strongly stable conditions. The validity of the Monin-Obukhov similarity theory was questionable for cross-fjord flow directions and in the presence of mesoscale variability or topographic effects. The aerodynamic roughness length showed a dependence on the wind direction. The mean roughness length for along-fjord wind directions was (2.4 ± 2.6) × 10−4 m, whereas that for cross-fjord directions was (5.4 ± 2.8) × 10−3 m. The thermal stratification and turbulent fluxes were affected by the synoptic situation with large differences between the 2 years. Channelling effects and drainage flows occurred especially during a weak large-scale flow. The study periods were simulated applying the Weather Research and Forecasting (WRF) model with 1-km horizontal resolution in the finest domain. The results for the 2-m air temperature and friction velocity were good, but the model failed to reproduce the spatial variability in wind direction between measurement sites 3 km apart. The model suggested that wind shear above the stable boundary layer provided a non-local source for the turbulence observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreas EL, Claffey KJ (1995) Air-sea drag coefficients in the western Weddell sea: 1. Values deduced from profile measurements. J Geophys Res 100(C3): 4821–4831

    Article  Google Scholar 

  • Andreas EL, Guest PS, Persson POG, Fairall CW, Horst TW, Moritz RE, Semmer SR (2002) Near-surface water vapor over polar sea ice is always near saturation. J Geophys Res 107(C10): 8033. doi:10.1029/2000JC000411

    Article  Google Scholar 

  • Andreas EL, Jordan RE, Makshtas AP (2004) Simulations of snow, ice, and nearsurface atmospheric processes on Ice Station Weddell. J Hydrometeorol 5: 611–624

    Article  Google Scholar 

  • Andreas EL, Persson POG, Jordan RE, Horst TW, Guest PS, Grachev AA, Fairall CW (2010) Parameterizing turbulent exchange over sea ice in winter. J Hydrometeorol 11: 87–104. doi:10.1175/2009JHM1102.1

    Article  Google Scholar 

  • Argentini S, Mastrantonio G, Maurizi A, Georgiadis T, Nardino M (2003) Characteristics of the boundary layer at Ny-Ålesund in the Arctic during the ARTIST field experiment. Ann Geophys 46(2): 185–195

    Google Scholar 

  • Arya SP (2001) Introduction to micrometeorology. Academic Press, New York, 303 pp

    Google Scholar 

  • Barry RG (2008) Mountain weather and climate. Cambridge University Press, Cambridge, 506 pp

    Book  Google Scholar 

  • Curry JA, Schramm JL, Alam A, Reeder R, Arbetter TE, Guest PS (2002) Evaluation of data sets used to force sea ice models in the Arctic Ocean. J Geophys Res 107(C10): 8027. doi:10.1029/2000JC000466

    Article  Google Scholar 

  • Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci 46: 3077–3107

    Article  Google Scholar 

  • Dyer AJ (1974) A review of flux-profile relationships. Boundary-Layer Meteorol 7: 363–372

    Article  Google Scholar 

  • Foken T, Wichura B (1996) Tools for quality assessment of surface-based flux measurements. Agric For Meteorol 78(1–2): 83–105

    Article  Google Scholar 

  • Grachev AA, Andreas EL, Fairall CW, Guest PS, Persson POG (2007) SHEBA flux-profile relationships in the stable atmospheric boundary layer. Boundary-Layer Meteorol 124: 315–333. doi:10.1007/s10546-007-9177-6

    Article  Google Scholar 

  • Grachev AA, Andreas EL, Fairall CW, Guest PS, Persson POG (2008) Turbulent measurements in the stable atmospheric boundary layer during SHEBA: ten years after. Acta Geophys 56(1): 142–166

    Article  Google Scholar 

  • Heinemann G (2003) Forcing and feedback mechanisms between the katabatic wind and sea ice in the coastal areas of polar ice sheets. J Atmos Ocean Sci 9: 169–201

    Google Scholar 

  • Heinemann G, Klein T (2002) Modelling and observations of the katabatic flow dynamics over Greenland. Tellus 54A: 542–554

    Google Scholar 

  • Holtslag AAM, De Bruin HAR (1988) Applied modeling of the nighttime surface energy balance over land. J Appl Meteorol 27(6): 689–704

    Article  Google Scholar 

  • Hong SY, Noh Y (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134: 2318–2341

    Article  Google Scholar 

  • Hong SY, Dudhia J, Chen SH (2004) A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon Weather Rev 132: 103–120

    Article  Google Scholar 

  • Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows: their structure and measurement. Oxford University Press, New York, 289 pp

    Google Scholar 

  • Kaimal JC, Gaynor JE (1991) Another look at sonic thermometry. Boundary-Layer Meteorol 56(4): 401–410

    Article  Google Scholar 

  • Kilpeläinen T, Sjöblom A (2010) Momentum and sensible heat exchange in an ice-free Arctic fjord. Boundary-Layer Meteorol 134: 1472–1573

    Article  Google Scholar 

  • Kilpeläinen T, Vihma T, Olafsson H (2011) Modelling of spatial variability and topographic effects over Arctic fjords in Svalbard. Tellus 63A: 223–237. doi:10.1111/j.1600-0870.2010.00481.x

    Google Scholar 

  • König-Langlo G, King JC, Pettre P (1998) Climatology of the three coastal Antarctic stations Dumont d’Urville, Neumayer, and Halley. J Geophys Res 103: 10935–10946

    Article  Google Scholar 

  • Launiainen J, Vihma T (1990) Derivation of turbulent surface fluxes—an iterative flux-profile method allowing arbitrary observing heights. Environ Softw 5(3): 113–124

    Article  Google Scholar 

  • Launiainen J, Cheng B, Uotila J, Vihma T (2001) Turbulent surface fluxes and air-ice coupling in the Baltic Air-Sea-Ice Study (BASIS). Ann Glaciol 33: 237–242

    Article  Google Scholar 

  • Lee X, Finnigan J, Paw KT (2004) Coordinate systems and flux bias error. In: Lee X, Massman WJ, Law BE (eds) Handbook of micrometeorology: a guide for surface flux measurement and analysis. Kluwer Academic Publishers, Dordrech, pp 33–66

    Google Scholar 

  • Liu H, Peters G, Foken T (2001) New equations for sonic temperature variance and buoyancy heat flux with an omnidirectional sonic anemometer. Boundary-Layer Meteorol 100(3): 459–468

    Article  Google Scholar 

  • Lumley JL, Panofsky HA (1964) The structure of atmospheric turbulence. Wiley, New York, 239 pp

    Google Scholar 

  • Lüpkes C, Vihma T, Birnbaum G, Wacker U (2008a) Influence of leads in sea ice on the temperature of the atmospheric boundary layer during polar night. Geophys Res Lett 35: L03805. doi:10.1029/2007GL032461

    Article  Google Scholar 

  • Lüpkes C, Gryanik VM, Witha B, Gryschka M, Raasch S, Gollnik T (2008b) Modeling convection over Arctic leads with LES and a non-eddy-resolving microscale model. J Geophys Res 113: C09028. doi:10.1029/2007JC004099

    Article  Google Scholar 

  • Mahrt L (1999) Stratified atmospheric boundary layers. Boundary-Layer Meteorol 90(3): 375–396

    Article  Google Scholar 

  • Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102(D14): 16663–16682

    Article  Google Scholar 

  • Persson POG, Fairall CW, Andreas EL, Guest PS, Perovich DK (2002) Measurements near the atmospheric surface flux group tower at SHEBA: near-surface conditions and surface energy budget. J Geophys Res 107(C10): 8045. doi:10.1029/2000JC000705

    Article  Google Scholar 

  • Renfrew IA (2004) The dynamics of idealized katabatic flow over a moderate slope and ice shelf. Q J R Meteorol Soc 130(598): 1023–1045

    Article  Google Scholar 

  • Sandvik AD, Furevik BR (2002) Case study of a coastal jet at Spitsbergen—comparison of SAR- and model-estimated wind. Mon Weather Rev 130: 1040–1051

    Article  Google Scholar 

  • Schotanus P, Nieuwstadt FTM, De Bruin HAR (1983) Temperature measurements with a sonic anemometer and its application to heat and moisture fluxes. Boundary-Layer Meteorol 26: 81–93

    Article  Google Scholar 

  • Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Wang W, Powers JG (2007) A description of the advanced research WRF Version 2. NCAR technical note 468+STR, 88 pp

  • Sjöblom A, Smedman A (2002) The turbulent kinetic energy budget in the marine atmospheric boundary layer. J Geophys Res 107(C10): 3142. doi:10.1029/2001JC001016

    Article  Google Scholar 

  • Skogseth R, Smedsrud LH, Nilsen F, Fer I (2008) Observations of hydrography and downflow of brine-enriched shelf water in the Storfjorden polynya, Svalbard. J Geophys Res 113: C08049. doi:10.1029/2007JC004452

    Article  Google Scholar 

  • Streten NA (1990) A review of the climate of Mawson—a representative strong wind site in East Antarctica. Antarct Sci 2(1): 79–89

    Article  Google Scholar 

  • Tisler P, Vihma T, Müller G, Brümmer B (2008) Modelling of warm-air advection over Arctic sea ice. Tellus 60A: 775–788

    Google Scholar 

  • Tjernström M, Mauritsen T (2009) Mesoscale variability in the summer Arctic boundary layer. Boundary-Layer Meteorol 130: 383–406. doi:10.1007/s10546-009-9354-x

    Article  Google Scholar 

  • Tjernström M, Zagar M, Svensson G, Cassano J, Pfeifer S, Rinke A, Wyser K, Dethloff K, Jones C, Semmler T, Shaw M (2005) Modelling of the Arctic boundary layer: an evaluation of six ARCMIP regional-scale models using data from the SHEBA project. Boundary-Layer Meteorol 117: 337–381

    Article  Google Scholar 

  • Unden P et al (2002) HIRLAM-5 scientific documentation. HIRLAM-5 Project. Norrköping, Sweden, p 144

  • Valkonen T, Vihma T, Doble M (2008) Mesoscale modelling of the atmospheric boundary layer over the Antarctic sea ice: a late autumn case study. Mon Weather Rev 136: 1457–1474

    Article  Google Scholar 

  • Vickers D, Mahrt L (1997) Quality control and flux sampling problems for tower and aircraft data. J Atmos Ocean Technol 14(3): 512–526

    Article  Google Scholar 

  • Vihma T (1995) Subgrid parameterization of surface heat and momentum fluxes over polar Oceans. J Geophys Res 100: 22625–22646

    Article  Google Scholar 

  • Vihma T, Hartmann J, Lüpkes C (2003) A case study of an on-ice air flow over the Arctic marginal sea ice zone. Boundary-Layer Meteorol 107(1): 189–217

    Article  Google Scholar 

  • Vihma T, Lüpkes C, Hartmann J, Savijärvi H (2005) Observations and modelling of cold-air advection over Arctic sea ice in winter. Boundary-Layer Meteorol 117: 275–300

    Article  Google Scholar 

  • Wyngaard JC, Coté OR, Izumi Y (1971) Local free convection, similarity, and the budgets of shear stress and heat flux. J Atmos Sci 28(7): 1171–1182

    Article  Google Scholar 

  • Zilitinkevich S (2002) Third-order transport due to internal waves and non-local turbulence in the stably stratified surface layer. Q J R Meteorol Soc 128: 913–925

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timo Vihma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mäkiranta, E., Vihma, T., Sjöblom, A. et al. Observations and Modelling of the Atmospheric Boundary Layer Over Sea-Ice in a Svalbard Fjord. Boundary-Layer Meteorol 140, 105–123 (2011). https://doi.org/10.1007/s10546-011-9609-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-011-9609-1

Keywords

Navigation