Skip to main content
Log in

Resolved Versus Parametrized Boundary-Layer Plumes. Part II: Continuous Formulations of Mixing Rates for Mass-Flux Schemes

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The conditional sampling of coherent structures in large-eddy simulations of the convective boundary layer (Couvreux et al. Boundary-layer Meteorol 134:441–458, 2010) is used to propose and evaluate formulations of fractional entrainment and detrainment rates for mass-flux schemes. The proposed formulations are physically-based and continuous from the surface to the top of clouds. Entrainment is related to the updraft vertical velocity divergence, while detrainment depends on the thermal vertical velocity, on buoyancy and on the moisture contrast between the mean plume and its environment. The proposed formulations are first directly evaluated in simulations of shallow clouds. They are then tested in single-column simulations with the thermal plume model, a mass-flux representation of boundary-layer thermals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blyth AM, Cooper WA, Jensen JB (1988) A study of the source of entrained air in Montana cumuli. J Atmos Sci 45: 3944–3964

    Article  Google Scholar 

  • Bretherton C, Smolarkiewicz P (1989) Gravity waves, compensating subsidence and detrainment around cumulus clouds. J Atmos Sci 46: 740–759

    Article  Google Scholar 

  • Bretherton C, McCaa J, Grenier H (2004) A new parameterization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers. Part I: description and 1D results. Mon Weather Rev 132: 864–882

    Article  Google Scholar 

  • Brown A, Cederwall R, Chlond A, Duynkerke P, Golaz J-C, Khairoutdinov M, Lewellen D, Lock A, Macvean M, Moeng C-H, Neggers R, Siebesma A, Stevens B (2002) Large-eddy simulation of the diurnal cycle of shallow cumulus convection over land. Q J Roy Meteorol Soc 128: 1075–1093

    Article  Google Scholar 

  • Chatfield RB, Brost RA (1987) A two-stream model of the vertical transport of trace species in the convective boundary layer. J Geophys Res 92: 13263–13276

    Article  Google Scholar 

  • Coindreau O, Hourdin F, Haeffelin M, Mathieu A, Rio C (2007) Assessment of physical parameterizations using a global climate model with stretchable grid and nudging. Mon Weather Rev 135: 1474–1489

    Article  Google Scholar 

  • Couvreux F, Guichard F, Redelsperger J-L, Flamant C, Masson V, Kiemle C, Lafore J-P (2005) Water vapour variability within a convective boundary layer assessed by large eddy simulations and IHOP observations. Q J Roy Meteorol Soc 131:2665–2693

    Article  Google Scholar 

  • Couvreux F, Guichard F, Masson V, Redelsperger J-L (2007) Negative water vapour skewness and dry tongues in the convective boundary layer: observations and large-eddy simulation budget analysis. Boundary-Layer Meteorol 123: 269–294

    Article  Google Scholar 

  • Couvreux F, Hourdin F, Rio C (2010) Resolved versus parameterized boundary layer thermals. Part I: a parameterization oriented conditional sampling in large Eddy simulations. Boundary-Layer Meteorol 134: 441–458

    Article  Google Scholar 

  • Rooy WC, Siebesma AP (2008) A simple parameterization for detrainment in shallow cumulus. Mon Weather Rev 136: 560–576

    Article  Google Scholar 

  • Deardorff JW (1972) Theoretical expression for the countergradient vertical heat flux. J Geophys Res 77: 5900–5904

    Article  Google Scholar 

  • Gregory D (2001) Estimation of entrainment rate in simple models of convective clouds. Q J Roy Meteorol Soc 127: 53–72

    Article  Google Scholar 

  • Grossman RL (1984) Bivariate conditional sampling of moisture flux over a tropical ocean. J Atmos Sci 41: 3238–3253

    Article  Google Scholar 

  • Heus T, Jonker HJJ (2008) Subsiding shells around cumulus clouds. J Atmos Sci 65: 1003–1018

    Article  Google Scholar 

  • Heus T, Dijk G, Jonker HJJ, Akker HEA (2008) Mixing in shallow cumulus clouds studied by lagrangian particle tracking. J Atmos Sci 65: 2581–2597

    Article  Google Scholar 

  • Hourdin F, Couvreux F, Menut L (2002) Parameterisation of the dry convective boundary layer based on a mass flux representation of thermals. J Atmos Sci 59: 1105–1123

    Article  Google Scholar 

  • Hourdin F, Musat I, Bony S, Braconnot P, Codron F, Dufresne J-L, Fairhead L, Filiberti M-A, Friedlingstein P, Grandpeix J-Y, Krinner G, LeVan P, Li Z-X, Lott F (2006) The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Clim Dyn 27: 787–813

    Article  Google Scholar 

  • LeMone MA, Pennell WT (1976) The relationship of trade wind cumulus distribution to subcloud layer fluxes and structure. Mon Weather Rev 104: 524–539

    Article  Google Scholar 

  • Moeng C, Wyngaard JC (1988) Spectral analysis of large-eddy simulations of the convective bounadary layer. J Atmos Sci 45(23): 3573–3587

    Article  Google Scholar 

  • Neggers RAJ, Siebesma P, Jonker HJJ (2002) A multiparcel model for shallow cumulus convection. J Atmos Sci 59:1655–1668

    Article  Google Scholar 

  • Neggers RAJ, Jonker HJJ, Siebesma AP (2003) Size statistics of cumulus clouds populations in large-eddy simulations. J Atmos Sci 60: 1060–1074

    Article  Google Scholar 

  • Nordeng TE (1994) Extended versions of the convective parametrization scheme at ECMWF and their impact on the mean and transient activity of the model in the Tropics. Technical memo. 206, ECMWF

  • Paluch IR (1979) The entrainment mechanism in Colorado cumuli. J Atmos Sci 36: 2467–2478

    Article  Google Scholar 

  • Pergaud J, Masson V, Malardel S, Couvreux F (2009) A parameterization of dry thermals and shallow cumuli for mesoscale numerical weather prediction. Boundary-Layer Meteorol 132, 83–106

    Article  Google Scholar 

  • Rio C, Hourdin F (2008) A thermal plume model for the convective boundary layer: representation of cumulus clouds. J Atmos Sci 65: 407–425

    Article  Google Scholar 

  • Siebesma AP (1998) Shallow cumulus convection. In: Plate EJ, Fedorovich EE, Viegas DX, Wyngaard JC (eds) Buoyant convection in geophysical flow. Kluwer, Dordrecht, pp 441–486

    Google Scholar 

  • Siebesma A, Cuijpers J (1995) Evaluation of parametric assumptions for shallow cumulus convection. J Atmos Sci 52: 650–666

    Article  Google Scholar 

  • Siebesma AP, Jonker HJJ (2000) Anomalous scaling of cumulus cloud boundaries. Phys Rev Lett 85: 214–217

    Article  Google Scholar 

  • Siebesma A, Teixera J (2000) An advection–diffusion scheme for the convective boundary layer, description and 1D results. In: Proceedings of 14th AMS symposium on boundary layers and turbulence, AMS

  • Siebesma AP, Bretherton CS, Brown A, Chlond A, Cuxart J, Duynkerke PG, Jiang H, Khairoutdinov M, Lewellen D, Moeng C-H, Sanchez E, Stevens B, Stevens DE (2003) A large eddy simulation intercomparison study of shallow cumulus convection. J Atmos Sci 60: 1201–1219

    Article  Google Scholar 

  • Simpson J, Wiggert V (1969) Models of precipitating cumulus towers. Mon Weather Rev 97: 471–489

    Article  Google Scholar 

  • Soares P, Miranda P, Siebesma A, Teixeira J (2004) An eddy-diffusivity/mass flux parameterization for dry and shallow cumulus convection. Q J Roy Meteorol Soc 130:3365–3383

    Article  Google Scholar 

  • Stith JL (1992) Observations of cloud-top entrainment in cumuli. J Atmos Sci 49: 1334–1347

    Article  Google Scholar 

  • Stull RB (1984) Transilient turbulence theory. Part I: the concept of eddy-mixing across finite distances. J Atmos Sci 41: 3351–3367

    Article  Google Scholar 

  • Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117: 1179–1800

    Article  Google Scholar 

  • Salzen K, McFarlane NA (2002) Parameterization of the bulk effects of lateral and cloud-top entrainment in transient shallow cumulus clouds. J Atmos Sci 59: 1405–1430

    Article  Google Scholar 

  • Williams AG, Hacker JM (1992) The composite shape and structure of coherent eddies in the convective boundary layer. Boundary-Layer Meteorol 61: 213–245

    Article  Google Scholar 

  • Yamada T (1983) Simulations of nocturnal drainage flows by a q 2 l turbulence closure model. J Atmos Sci 40: 91–106

    Article  Google Scholar 

  • Young GS (1988) Turbulence structure of the convective boundary layer. Part II: phoenix 78 aircraft observations of thermals and their environment. J Atmos Sci 45: 727–735

    Article  Google Scholar 

  • Zhao M, Austin P (2005) Life cycle of numerically simulated shallow cumulus clouds. Part I: mixing dynamics. J Atmos Sci 62: 1291–1310

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Rio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rio, C., Hourdin, F., Couvreux, F. et al. Resolved Versus Parametrized Boundary-Layer Plumes. Part II: Continuous Formulations of Mixing Rates for Mass-Flux Schemes. Boundary-Layer Meteorol 135, 469–483 (2010). https://doi.org/10.1007/s10546-010-9478-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-010-9478-z

Keywords

Navigation