Skip to main content

Advertisement

Log in

The Effect of the Sea-ice Zone on the Development of Boundary-layer Roll Clouds During Cold Air Outbreaks

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

High latitude air–sea interaction is an important component of the earth’s climate system and the exchanges of mass and energy over the sea-ice zone are complicated processes that, at present, are not well understood. In this paper, we perform a series of numerical experiments to examine the effect of sea-ice concentration on the development of high latitude boundary-layer roll clouds. The experiments are performed at sufficiently high spatial resolution to be able to resolve the individual convective roll clouds, and over a large enough domain to be able to examine the roll’s downstream development. Furthermore the high spatial resolution of the experiments allows for an explicit representation of heterogeneity within the sea-ice zone. The results show that the sea-ice zone has a significant impact on the atmospheric boundary-layer development, which can be seen in both the evolution of the cloud field and the development of heat and moisture transfer patterns. In particular, we find the air-sea exchanges of momentum, moisture and heat fluxes are modified by the presence of the roll vortices (typically a 10% difference in surface heat fluxes between updrafts and downdrafts) and by the concentration and spatial distribution of the sea-ice. This suggests that a more realistic representation of processes over the sea-ice zone is needed to properly calculate the air-sea energy and mass exchange budgets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander M.A., Bhatt U.S., Walsh J.E., Timlin M.S., Miller J.S. and Scott J.D. (2004). ‘The Atmospheric Response to Realistic Arctic Sea Ice Anomalies in an AGCM during Winter’. J. Climate 17: 890–905

    Article  Google Scholar 

  • Asai T. (1970). ‘Three Dimensional Features of Thermal Convection in a Plane Couette Flow’. J. Meteorol. Soc. Japan 48: 18–29

    Google Scholar 

  • Asuma Y., Kikuchi K. and Uyeda H. (1997). ‘Organizations and the Interior Characteristics of Winter Monsoon Clouds by Dual-Polarization Doppler Radar Observation in Hokuriku, Japan’. Atmos. Res. 43: 297–314

    Article  Google Scholar 

  • Braham R.R. and Kristovich D.A.R. (1996). ‘On Calculating the Buoyancy of Cores in a Convective Boundary Layer’. J. Atmos. Sci. 53: 654–658

    Article  Google Scholar 

  • Brummer B. (1996). Boundary-layer modification in wintertime cold-air outbreaks from the arctic sea ice. Boundary-Layer Meteorol. 80: 109–125

    Article  Google Scholar 

  • Brummer B. (1997). Boundary Layer Mass, Water and Heat Budgets in Wintertime Cold-air Outbreaks from the Arctic Sea Ice. Mon. Wea. Rev. 125: 1824–1837

    Article  Google Scholar 

  • Brummer B. (1999). Roll and Cell Convection in Wintertime Arctic Cold-air Outbreaks. J. Atmos. Sci. 56: 2613–2636

    Article  Google Scholar 

  • Brummer B. and Pohlmann S. (2000). Wintertime Roll and Cell Convection over Greenland and Barents Sea Regions: A Climatology. J. Geophys. Res. 105: 15559–15566

    Article  Google Scholar 

  • Brummer B. and Thiemann S. (2002). The Atmospheric Boundary Layer in an Arctic Wintertime On-ice Air Flow. Boundary-Layer Meteorol. 104: 53–72

    Article  Google Scholar 

  • Brummer B., Rump B. and Kruspe G. (1992). ‘A Cold Air Outbreak near Spitsbergen in Springtime – Boundary-Layer Modification and Cloud Development’. Boundary-Layer Meteorol. 61: 13–46

    Article  Google Scholar 

  • Brummer B., Busack B., Hoeber H. and Kruspe G. (1994). ‘Boundary-Layer Observations over Water and Artic Sea-Ice During on-Ice Air-Flow’. Boundary-Layer Meteorol. 68: 75–108

    Article  Google Scholar 

  • Bullock R.J., Voles R., Currie A., Griffiths H.D. and Brennan P.V. (1997). ‘Two-look Method for Correction of Roll Errors in Aircraft-Borne Interferometric SAR’. Electronics Lett. 33: 1581–1583

    Article  Google Scholar 

  • Clement J.L., Cooper L.W. and Grebmneier J.M. (2004). ‘Late Winter Water Column and Sea Ice Conditions in the Northern Bering Sea’. J. Geophys. Res. 109: C03022, doi:10.1029/2003JC002047

    Article  Google Scholar 

  • Cooper K.A., Hjelmfelt M.R., Derickson R.G., Kristovich D.A.R. and Laird N.F. (2000). ‘Numerical Simulation of Transitions in Boundary Layer Convective Structures in a Lake-effect Snow Event’. Mon. Wea. Rev 128: 3283–3295

    Article  Google Scholar 

  • Dare R.A. and Atkinson B.W. (1999). ‘Numerical Modelling of Atmospheric Response to Polynyas in the Southern Ocean Sea Ice Zone’. J. Geophys. Res. 104: 16691–16708

    Article  Google Scholar 

  • Dare R.A. and Atkinson B.W. (2000). ‘Atmospheric Response to Spatial Variations in Concentration and Size of Polynyas in the southern Ocean Sea-ice Zone’. Boundary-Layer Meteorol. 94: 65–88

    Article  Google Scholar 

  • Etling D. and Brown R.A. (1993). Roll Vortices in the Planetary Boundary-Layer - a Review. Boundary-Layer Meteorol. 65: 215–248

    Article  Google Scholar 

  • Grotzner A., Sausen R. and Claussen M. (1996). ‘The Impact of Sub-grid Scale Sea-ice inhomogeneities on the Performance of the Atmospheric General Circulation Model ECHAM3’. Clim. Dynamics 12: 477–496

    Article  Google Scholar 

  • Guest P.S., Glendening J.W. and Davidson K.L. (1995). ‘An Observational and Numerical Study of Wind Stress Variations within Marginal Ice Zones’. J. Geophys. Res. 100: 10887–10904

    Article  Google Scholar 

  • Hartmann J., Kottmeier C. and Raasch S. (1997). ‘Roll Vortices and Boundary-layer Development during a Cold Air Outbreak’. Boundary-Layer Meteorol. 84: 45–65

    Article  Google Scholar 

  • Haggerty J.A., Maslanik J.A., Curry J.A. (2003), ‘Heterogeneity of Sea Ice Surface Temperature at SHEBA from Aircraft Measurements’. J. Geophys. Res. 108, C10 8052, doi: 10.1029/2000JC000560.

  • Inoue J., Ono J., Tachibana Y., Honda M., Iwamoto K., Fujiyoshi Y. and Takeuchi K. (2003). ‘Characteristics of Heat Transfer over the Ice Covered Sea of Okhotsk during Cold-air Outbreaks’. J. Meteorol Soc. Japan 81: 1057–1067

    Article  Google Scholar 

  • Khanna S. and Brasseur J.G. (1998). ‘Three-dimensional Buoyancy-and Shear-induced Local Structure of the Atmospheric Boundary Layer’. J. Atmos. Sci. 55: 710–743

    Article  Google Scholar 

  • Kondo J. (1975). ‘Air-sea bulk transfer coefficients in diabatic conditions’. Boundary-Layer Meteorol. 9: 91–112

    Article  Google Scholar 

  • Kristovich D.A.R., Young G.S., Verlinde J., Sousounis P.J., Mourad P., Lenschow D., Rauber R.M., Ramamurthy M.K., Jewett B.F., Beard K., Cutrim E., DeMott P.J., Eloranta E.W., Hjelmfelt M.R., Kreidenweis S.M., Martin J., Moore J., Ochs H.T., Rogers D.C., Scala J., Tripoli G. and Young J. (2000). ‘The Lake-Induced Convection Experiment and the Snowband Dynamics Project’. Bull. Amer. Meteorol. Soc. 81: 519–542

    Article  Google Scholar 

  • Levy G. (2001). ‘Boundary Layer Roll Statistics from SAR’. Geophys. Res. Lett. 28: 1993–1995

    Article  Google Scholar 

  • Liu A.Q., Moore G.W.K., Tsuboki K. and Renfrew I.A. (2004). ‘A High-resolution Simulation of Convective Roll Clouds during a Cold-air Outbreak’. Geophys. Res. Lett. 31: L03101, dio:10.1029/2003GL018530

    Article  Google Scholar 

  • Marshall J., Dobson F., Moore K., Rhines P., Visbeck M., d’Asaro E., Bumke K., Chang S., Davis R., Fischer K., Garwood R., Guest P., Harcourt R., Herbaut C., Holt T., Lazier J., Legg S., Mcwilliams J., Pickart R., Prater M., Renfrew I., Schott F., Send U., Smethie W. and Grp L.S. (1998). ‘The Labrador Sea deep Convection Experiment’. Bull. Amer. Meteorol. Soc. 79: 2033–2058

    Article  Google Scholar 

  • Mason P.J. and Sykes R.I. (1982). ‘A Two-Dimensional Numerical Study of Horizontal Roll Vortices in an Inversion Capped Planetary Boundary-Layer’. Quart. J. Roy Meteorol. Soc. 108: 801–823

    Article  Google Scholar 

  • Moeng C.H. and Sullivan P.P. (1994). ‘A Comparison of Shear-Driven and Buoyancy-Driven Planetary Boundary-Layer Flows’. J. Atmos. Sci. 51: 999–1022

    Article  Google Scholar 

  • Moore G.W.K., Reader M.C., York J. and Sathiyamoorthy S. (1996). ‘Polar Lows in the Labrador Sea–A Case Study’. Tellus A 48: 17–40

    Article  Google Scholar 

  • Mourad P.D. and Walter B.A. (1996a). ‘Viewing a Cold Air Outbreak using Satellite-based Synthetic Aperture Radar and Advanced Very High Resolution Radiometer Imagery’. J. Geophys. Res. 101: 16391–16400

    Article  Google Scholar 

  • Mourad P.D. and Walter B.A. (1996b). ‘Analysis of Mesoscale Linear Features Observed in the Artic Atmospheric Boundary Layer’. Mon. Wea. Rev. 124: 1924–1940

    Article  Google Scholar 

  • Muller G., Brummer B. and Alpers W. (1999). ‘Roll-Convection Within an Arctic Cold-air Outbreak: Interpretation of In situ Aircraft Measurements and Spaceborne SAR Imagery by a Three-dimensional Atmospheric Model’. Mon. Wea. Rev. 127: 363–380

    Article  Google Scholar 

  • Olsson P.Q. and Harrington J.Y. (2000). ‘Dynamics and Energetics of the Cloudy Boundary Layer in Simulations of Off-ice Flow in the Marginal Ice Zone’. J. Geophys. Res. 105: 11889–11899

    Article  Google Scholar 

  • Pagowski M. and Moore G.W.K. (2001). ‘A Numerical Study of an Extreme Cold-air Outbreak over the Labrador Sea: Sea Ice, Air–sea Interaction and Development of Polar Lows’. Mon. Wea. Rev. 129: 47–72

    Article  Google Scholar 

  • Parkinson C.L., Rind D., Healy R.J. and Martinson D.G. (2001). ‘The Impact of Sea Ice Concentration Accuracies on Climate Model Simulations with the GISS GCM’. J. Climate 14: 2606–2623

    Article  Google Scholar 

  • Raasch S. (1990). ‘Numerical-Simulation of the Development of the Convective Boundary-Layer During a Cold Air Outbreak’. Boundary-Layer Meteorol. 52: 349–375

    Article  Google Scholar 

  • Rasmussen E.A. and Turner J. (2003). Polar Lows: Mesoscale Weather Systems in the Polar Regions,1st ed. Cambridge University Press, Cambridge, U.K., 645

    Google Scholar 

  • Renfrew I.A. and Moore G.W.K. (1999). ‘An Extreme cold-Air Outbreak over the Labrador Sea: Roll Vortices and Air–sea Interaction’. Mon. Wea. Rev. 127: 2379–2394

    Article  Google Scholar 

  • Renfrew I.A. and King J.C. (2000). ‘A Simple Model of the Convective Internal Boundary Layer and its Application to Surface Heat Flux Estimates within Polynyas’. Boundary-Layer Meteorol. 94: 335–356

    Article  Google Scholar 

  • Renfrew I.A., Moore G.W.K., Holt T.R., Chang S.W. and Guest P. (1999). ‘Mesoscale Forecasting during a Field Program: Meteorological Support of the Labrador Sea Deep Convection Experiment’. Bull. Amer. Meteorol soc. 80: 605–620

    Article  Google Scholar 

  • Rind D., Healy R., Parkinson C. and Martinson D. (1997). ‘The role of sea ice in 2xCO(2) Climate Model Sensitivity. 2. Hemispheric Dependencies’. Geophys. Res. Lett. 24: 1491–1494

    Article  Google Scholar 

  • Schlunzen K.H. and Katzfey J. (2003). ‘Relevance of Sub-grid-Scale Land-use Effects for Mesoscale Models’. Tellus A 55: 232–246

    Article  Google Scholar 

  • Semmler T., Jacob D., Schlunzen K.H. and Podzun R. (2004). ‘Influence of Sea Ice Treatment in a Regional Climate Model on boundary Layer Values in the Fram Strait Region’. Mon. Wea. Rev. 132: 985–999

    Article  Google Scholar 

  • Sykes R.I. and Henn D.S. (1988). ‘On the Numerical Computation of Two-Dimensional Convective Flow’. J. Atmos. Sci. 45: 1961–1964

    Article  Google Scholar 

  • Sykes R.I. and Henn D.S. (1989). ‘Large-Eddy Simulation of Turbulent Sheared Convection. J. Atmos. Sci. 46: 1106–1118

    Article  Google Scholar 

  • Tsuboki K., Sakakibara, A. 2002, ‘Large-scale Parallel Computing of Cloud Resolving Storm Simulator’, in P. Z. Hans, K. Joe, M. Sato, Y. Seo, and M. Schimasaki (Eds.), High performance computing, 103 ed. Springer, 564 pp.

  • Tusboki K., Fujiyoshi Y. and Wakahama G. (1989). ‘Structure of Land Breeze and Snowfall Enhancement at the Leading Edge’. J. Meteorol. Soc. Japan 67: 757–770

    Google Scholar 

  • Venkatram A. (1977). ‘A Model of Internal Boundary-Layer Development’. Boundary-Layer Meteorol. 11: 419–437

    Article  Google Scholar 

  • Vihma T. and Brummer B. (2002). ‘Observations and Modeling of the On-ice and Off-ice Air flow over the Northern Baltic Sea’. Boundary-Layer Meteorol. 103: 1–27

    Article  Google Scholar 

  • Vihma T., Hartmann J. and Lupkes C. (2003). ‘A Case Study of an On-ice Air Flow over the Artic Marginal Sea-ice Zone’. Boundary-Layer Meteorol. 107: 189–217

    Article  Google Scholar 

  • Walter B.A. (1980). ‘Wintertime Observations of Roll Clouds over the Bering Sea’. Mon. Wea. Rev. 108: 2024–2031

    Article  Google Scholar 

  • Weckwerth T.M., Wilson J.W., Wakimoto R.M. and Crook N.A. (1997). ‘Horizontal Convective Rolls: Determining the Environmental Conditions Supporting their Existence and Characteristics’. Mon. Wea. Rev. 125: 505–526

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Q. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, A.Q., Moore, G.W.K., Tsuboki, K. et al. The Effect of the Sea-ice Zone on the Development of Boundary-layer Roll Clouds During Cold Air Outbreaks. Boundary-Layer Meteorol 118, 557–581 (2006). https://doi.org/10.1007/s10546-005-6434-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-005-6434-4

Keywords

Navigation