Skip to main content

Advertisement

Log in

Improvement in cell capture throughput using parallel bioactivated microfluidic channels

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Optimization of targeted cell capture with microfluidic devices continues to be a challenge. On the one hand, microfluidics allow working with microliter volumes of liquids, whereas various applications in the real world require detection of target analyte in large volumes, such as capture of rare cell types in several ml of blood. This contrast of volumes (microliter vs. ml) has prevented the emergence of microfluidic cell capture sensors in the clinical setting. Here, we study the improvement in cell capture and throughput achieved using parallel bioactivated microfluidic channels. The device consists of channels in parallel with each other tied to a single channel. We discuss fabrication and testing of our devices, and show the ability for an improvement in throughput detection of target cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • X. Cheng, D. Irimia, M. Dixon, K. Sekine, U. Demirci, L. Zamir, R.G. Tompkins, W. Rodriguez, M. Toner, Lab Chip 7, 170–178 (2007)

    Article  Google Scholar 

  • A.H. Talasaz, A.A. Powell, D.E. Huber, J.G. Berbee, K.-H. Roh, W. Yu, W. Xiao, M.M. Davis, R.F. Pease, M.N. Mindrinos, S.S. Jeffrey, R.W. Davis, Proc Natl Acad Sci 106, 3970–3975 (2009)

    Article  Google Scholar 

  • S. Nagrath, L.V. Sequist, S. Maheswaran, D.W. Bell, D. Irimia, L. Ulkus, M.R. Smith, E.L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U.J. Balis, R.G. Tompkins, D.A. Haber, M. Toner, Nature 450, 1235–1239 (2007)

    Article  Google Scholar 

  • Z. Du, K. Cheng, M. Vaughn, N. Collie, L. Gollahon, Biomedical Microdevices 9, 35–42 (2007)

    Article  Google Scholar 

  • M. Javanmard, A.H. Talasaz, M. Nemat-Gorgani, F. Pease, M. Ronaghi, R.W. Davis, Biomicrofluidics 1, 044103–044110 (2007)

    Article  Google Scholar 

  • J. El-Ali, P.K. Sorger, K.F. Jensen, Nature 442, 403–411 (2006)

    Article  Google Scholar 

  • S.M. Radke, E.C. Alocilja, Biosens Bioelectron 20, 1662–1667 (2005)

    Article  Google Scholar 

  • D. Irmia, M. Toner, Annu. Rev. Biomed. Eng. 7 (2005)

  • I. Nicoletti, G. Migliorati, M.C. Pagliacci, F. Grignani, C. Riccardi, J Immunol Methods 139, 271–279 (1991)

    Article  Google Scholar 

  • D. McClain, W. Lee, (Beltsville, Maryland, 1989)

  • J. B. Kaper and A. D. O’Brien, Escherichia coli O157:H7 and other Shiga toxin-producing E. coli strains. (ASM Press, Washington, D.C, 1998)

  • P. Mead, L. Slutsker, V. Dietz, L. McCaig, J. Bresee, S. Shapiro, P. Griffin, R. Tauxe, Emerg Infect Dis 5, 607 (1999)

    Article  Google Scholar 

  • S. B. March and S. Ratnam. J Clinical Microbiol 869 (1983)

  • M.A. Pfaller, R.N. Jones, S.A. Messer, M.B. Edmond, R.P. Wenzel, Diagn Microbiol Infect Dis 31, 327–332 (1998)

    Article  Google Scholar 

Download references

Acknowledgement

This research was supported by National Institutes of Health Grant P01 HG000205.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Javanmard.

Additional information

Mehdi Javanmard and Farbod Babrzadeh Contributed Equally

Rights and permissions

Reprints and permissions

About this article

Cite this article

Javanmard, M., Babrzadeh, F., Nyrén, P. et al. Improvement in cell capture throughput using parallel bioactivated microfluidic channels. Biomed Microdevices 14, 625–629 (2012). https://doi.org/10.1007/s10544-012-9643-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-012-9643-x

Keywords

Navigation