Skip to main content
Log in

Antibody immobilization on to polystyrene substrate—on-chip immunoassay for horse IgG based on fluorescence

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

A simple microfluidic immunoassay card was developed based on polystyrene (PS) substrate for the detection of horse IgG, an inexpensive model analyte using fluorescence microscope. The primary antibody was captured onto the PS based on covalent bonding via a self-assembled monolayer (SAM) of thiol to pattern the surface chemistry on a gold-coated PS. The immunosensor chip layers were fabricated from sheets by CO2 laser ablation. The functionalized PS surfaces after each step were characterized by contact angle measurement, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). After the antibody–antigen interaction as a sandwich immunoassay with a fluorescein isothiocyanate (FITC)-conjugated secondary antibody, the intensity of fluorescence was measured on-chip to determine the concentration of the target analyte. The present immunosensor chip showed a linear response range for horse IgG between 1 μg/ml and 80 μg/ml (r = 0.971, n = 3). The detection limit was found to be 0.71 μg/ml. The developed microfluidic system can be extended for various applications including medical diagnostics, microarray detection and observing protein–protein interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • M.F. Altieri, M. Camarca, Point of care testing Clin. Pediatr. Emerg. Med 4, 275–279 (2001). doi:10.1016/S1522-8401(01)90036-9

    Article  Google Scholar 

  • Y. Bai, C.G. Koh, M. Boreman, Y.-J. Juang, I.-C. Tang, L.J. Lee, S.-T. Yang, Surface modification for enhancing antibody binding on polymer based microfluidic device for enzyme-linked immunosorbent assay Langmuir 22, 9458–9467 (2006). doi:10.1021/la061123l

    Article  Google Scholar 

  • A. Bange, H.B. Halsall, W.R. Heineman, Microfluidic immunosensor system Biosens. Bioelectron 20, 2488–2503 (2005). doi:10.1016/j.bios.2004.10.016

    Article  Google Scholar 

  • G. Beamson, D. Briggs, High Resolution XPS of Organic Polymers The Scienta ESCA Database (Wiley, Chichester, U.K., 1992)

    Google Scholar 

  • H. Becker, L.E. Locascio, Polymer microfluidic devices Talanta 56(2), 267–287 (2002). doi:10.1016/S0039-9140(01)00594-X

    Article  Google Scholar 

  • F. Cecchet, M. Marcaccio, M. Margotti, F. Paolucci, S. Rapino, P. Rudolf, Redox mediation at 11-mercaptoundecanoic acid self-assembled monolayers on gold J. Phys. Chem. B 110, 2241–2248 (2006). doi:10.1021/jp054290n

    Article  Google Scholar 

  • M.L. Chabinyc, D.T. Chiu, J.C. McDonald, A.D. Stroock, An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications Anal. Chem. 73(18), 4491–4498 (2001). doi:10.1021/ac010423z

    Article  Google Scholar 

  • C.P.Y. Chan, W.S. Cheng, J.F.C. Glatz, D.V.D. Voort, J.E. Sanderson, A. Hempel, M. Lehmann, I. Renneberg, R. Rennerberg, Early diagnosis of acute myocardial infarction using immunosensors and immunotests Anal. Lett. 36(9), 1987–2004 (2003). doi:10.1081/AL-120023625

    Article  Google Scholar 

  • F. Darain, P. Yager, K.L. Gan, S.C. Tjin, On-chip detection of myoglobin based on fluorescence. Biosens. Bioelectron. (2008). doi:10.1016/j.bios.2008.09.004

  • A. de Mello, Plastic fantastic? Lab Chip 2, 31N–36N (2002)

    Article  Google Scholar 

  • E.P. Diamandis, T.K. Christopoulos (eds.), Immunoassay (Academic, New York, 1996)

  • J. Diao, D. Ren, J.R. Engstrom, K.L. Lee, A surface modification strategy on silicon nitride for developing biosensors Anal. Biochem. 343, 322–328 (2005)

    Article  Google Scholar 

  • H. Dong, C.-M. Li, Y.-F. Zhang, X.-D. Cao, Y. Gan, Screen-printed microfluidic device for electrochemical immunoassay Lab Chip 7, 1752–1758 (2007)

    Article  Google Scholar 

  • Y. Dong, T. Wilkop, D. Xu, Z. Wang, Q. Cheng, Microchannel chips for the multiplexed analysis of human immunoglobulin G–antibody interactions by surface plasmon resonance imaging Anal. Bioanal. Chem. 390, 1575–1583 (2008)

    Article  Google Scholar 

  • D. Erickson, D. Li, Integrated microfluidic devices Anal. Chim. Acta 507(1), 11–26 (2004)

    Article  Google Scholar 

  • E. Eteshola, D. Leckband, Development and characterization of an ELISA assay in PDMS microfluidic channels Sens. Actuat. B 72, 129–133 (2001)

    Article  Google Scholar 

  • P. Fernandez, J.S. Durand, C. Perez-Conde, G. Paniagua, Permanently oriented anibody immobilization for digoxin determination with a flow-through fluoroimmunosensor Anal. Bioanal. Chem. 375, 1020–1023 (2003)

    Google Scholar 

  • K.R. Hawkins, P. Yager, Nonlinear decrease of background fluorescence in polymer thin-films—a survey of materials and how they can complicate fluorescence detection in μTAS Lab Chip 3, 248–252 (2003)

    Article  Google Scholar 

  • H. Hillebrandt, M. Tanaka, Electrochemical characterization of self-assembled alkylsiloxane monolayers on indium–tin oxide (ITO) semiconductor electrode J. Phys. Chem. B 105, 4270–4276 (2001)

    Article  Google Scholar 

  • P.A. Johnson, R. Levicky, X-ray photoelectron spectroscopy and differential capacitance study of thiol-functional polysiloxane films on gold supports Langmuir 20(22), 9621–9627 (2004)

    Article  Google Scholar 

  • J. Kaur, K.V. Singh, M. Raje, G.C. Varshney, C.R. Suri, Strategies for direct attachment of hapten to a polystyrene support for application in enzyme-linked immunosorbent assay (ELISA) Anal. Chim. Acta 506, 133–135 (2004)

    Article  Google Scholar 

  • K.-H. Lee, Y.-D. Su, S.-J. Chen, F.-G. Tseng, G.-B. Lee, Microfluidic systems integrated with two-dimensional surface plasmon resonance phase imaging systems for microarray immunoassay Biosens. Bioelectron. 23, 466–472 (2007)

    Article  Google Scholar 

  • F.S. Ligler, C.A. Rawe-Taitt (eds.), Optical Biosensor: Present and Future (Elsevier, Amsterdam, 2002)

  • P.V. Lode, Point-of-care immunotesting: approaching the analytical performance of central laboratory methods Clin. Biochem. 38(7), 591–606 (2005)

    Article  Google Scholar 

  • H.J. Mathieu, Y. Chevolot, L. Ruiz-Taylor, D. Leonard, Engineering and characterization of polymer surfaces for biomedical applications Adv. Polym. Sci. 162, 1–34 (2003)

    Article  Google Scholar 

  • E. Mauriz, A. Calle, A. Abad, A. Montoya, A. Hildebrandt, D. Barcelo, L.M. Lechuga, Determination of carbaryl in natural water samples by a surface plasmon resonance flow-through immunosensor Biosens. Bioelectron. 21, 2129–2136 (2006)

    Google Scholar 

  • F. Nakamura, E. Ito, T. Hayashi, M. Hara, Fabrication of COOH-terminated self-assembled monolayers for DNA sensors Colloids Surf. A: Physicochem. Eng. Aspects 284–285, 495–498 (2006)

    Article  Google Scholar 

  • D.E. Rebeski, E.M. Winger, Y.K. Shin, M. Lehenta, M.M. Robinson, R. Verecka, J.R. Crowther, Identification of unacceptable background caused by non-specific protein adsorption to the plastic surface of 96-well immunoassay plates using a standardized enzyme-linked immunosorbant assay procedure J. Immunol. Methods 226, 85–92 (1999)

    Article  Google Scholar 

  • E.A. Schilling, A.E. Kamholz, P. Yager, Cell lysis and protein extraction in a microfluidic device with detection by a fluorogenic enzyme assay Anal. Chem. 74(8), 1798–1804 (2002)

    Article  Google Scholar 

  • P. St-Louis, Status of point-of-care testing: promise, realities, and possibilities Clin. Biochem. 33(6), 427–440 (2000)

    Article  Google Scholar 

  • X.D. Su, F.T. Chew, S.F.Y. Li, Self-assembled monolayer based piezoelectric crystal immunosensor for the quantification of total human immunoglobulin E Anal. Biochem. 273, 66–72 (1999)

    Article  Google Scholar 

  • A. Tlili, A. Abdelghani, S. Ameur, N. Jaffrezic-Renault, Impedance spectroscopy and affinity measurement of specific antibody–antigen interaction Mater. Sci. Eng. C 26, 546–550 (2006)

    Article  Google Scholar 

  • H. Wang, S. Meng, K. Guo, Y. Liu, P. Yang, W.Z.B. Liu, Microfluidic immunosensor based on stable antibody-patterned surface in PMMA microchip Electrochem. Commun. 10(3), 447–450 (2008)

    Article  Google Scholar 

  • P. Yager, Gonzalo, J. Domingo, J. Gerdes, Point-of-care diagnostics for global health Annu. Rev. Biomed. Eng. 10, 107–144 (2008)

    Article  Google Scholar 

  • L. Yu, C.M. Li, Q. Zhou, J.H.T. Luong, Poly(vinyl alcohol) functionalized poly(dimethylsiloxane) solid surface for immunoassay Bioconjugate Chem 18(2), 281–284 (2007)

    Article  Google Scholar 

  • Z. Zou, J. Kai, M.J. Rust, J. Han, C.H. Ahn, Functionalized nano interdigitated electrodes arrays on polymer with integrated microfluidics for direct bio-affinity sensing using impedimetric measurement Sens. Actuat. A: Phys. 136(2), 518–526 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Biomedical Engineering Research Council of Singapore under the Singapore-University of Washington Alliance program. F. Darain would like to thank Ms. Fang Xiaoqin from School of Electrical and Electronic Engineering for her help to make the design to cut the layers for microfluidic devices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzana Darain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Darain, F., Gan, K.L. & Tjin, S.C. Antibody immobilization on to polystyrene substrate—on-chip immunoassay for horse IgG based on fluorescence. Biomed Microdevices 11, 653–661 (2009). https://doi.org/10.1007/s10544-008-9275-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-008-9275-3

Keywords

Navigation