Skip to main content
Log in

Structure optimization of microvascular scaffolds

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

In this research, a systematic method for the design of a usable microvascular network based on the commercial software FEMLAB is proposed. The design principle comes out to be that the usable network should made up of multi branches with no more than two vertical nodes in individual branch. A special mask was designed to process the microvessel network for experimental verification of velocity uniformity. Accordingly, a simple lithograph approach, in which the PMMA polymer was selected as the substrate, the negative photoresist JSR was employed to form the microchannel structure, was implemented to fabricate the network. Experimental results verified the uniformity of the velocity profile in the microvessel network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • G.T.A. Kovacs and N.I. Malufand K.E. Petersen, Bulk micromachining of silicon, Proceedings of the IEEE 86, 1536–1551 (1998).

    Article  Google Scholar 

  • L.C. Pan, Y.C. Liang, F.G. Tseng, K.C. Leou and L.D. Chenand Y.Y.Lai, A novel application of acoustic plate mode sensor in tissueregeneration, Proceedings of the IEEE-EMBS Special Topic Conferenceon Microtechnologies in Medicine & Biology: 143–144 (2002).

  • H.K. Chang and Y.K. Kim, UV-LIGA process for high aspect ratio structure using stress barrier and C-shaped etch hole, Sensor and Actuators 84, 342–350 (2000).

    Google Scholar 

  • C. Marques, Y.M. Desta, J. Rogers and M.C. Murphyand K. Kelly,Fabrication of high-aspect-ratio microstructures on planar andnonplanar surfaces using a modified LIGA process, J. of Microelectromechanical Systems 6, 229–236 (1997).

    Google Scholar 

  • N.L. Jeon and D.T. Chiu, Design and fabrication of integratedpassive valves and pumps for flexible polymer 3-Dimensionalmicrofluidic systems, Biomedical Microdevices 4, 117–121 (2002).

    Article  Google Scholar 

  • H. Becker and U. Heim, “Silicon as tool material for polymer hotembossing, Twelfth IEEE International Conference on MEMS: 228–231 (1999).

  • A.P. Hui and S.J. Qin, High aspect ratio nano fluidic channels bylaser controlled fracturing, Proceeding of the Fifteenth IEEEInternational Conference on MEMS: 156–159 (2002).

  • V.V. Kancharla and S. Chen, Fabrication of Biodegradable Polymeric Micro-Devices Using Laser Micromachining, Biomedical Microdevices 4, 105–109 (2002).

    Article  Google Scholar 

  • M.J. Madou, L.J. Lee, S. Daunert and S. Laiand C.H. Shih, Design andFabrication of CD-like Microfluidic Platforms for Diagnostics:Microfluidic Functions, Biomedical Microdevices 3, 245–254 (2001).

    Article  Google Scholar 

  • R.S. Martin, A.J. Gawron and S.M. Lunteand C.S. Henry,Dual-Electrode Electrochemical Detection for Poly(dimethylsiloxane)-Fabricated Capillary Electrophoresis Microchips,Anal. Chem. 72, 3196–3202 (2000).

    Google Scholar 

  • G. Jiang, S. Attiya, G. Ocvirk and W.E. Leeand D.J. Harrison, Reddiode laser induced fluorescence diction with a confocal microscopeon a microchip for capillary electrophoresis, Biosensor andBioelectronics 14, 861–869 (2000).

    Google Scholar 

  • D.L. Polla, P. Krulevitch, A. Wang, G. Smith and J. DiazS. Mantell, J.Zhou, S. Zurn, Y. Nam, L. Cao, J. Hamilton, C. Fuller, and P.Gascoyne, MEMS–based diagnostic Microsystems, Proceeding of the 1st Annual International IEEE-EMBS Special Topic Conferenceon Microtechnologies in Medicine & Biology: 41–44 (2000).

  • M. Alvarez, A. Calle, J. Tamayo, L.M. Lechuga and A. Abadand A.Montoya, Development of Nanomechanical Biosensors for Detection of the Pesticide DDT, Biosensors and Bioelectronics 18, 649–653 (2003).

    Article  Google Scholar 

  • H. Tang and D.J. Beebe, Design and Microfabrication of a FlexibleOral Electrotactile Display, J. Microelectromechanical Systems12, 29–36 (2003).

    Google Scholar 

  • J. Borenstein, H. Terai, K.R. King, E.J. Weinberg, M. Kaazempur-Mofrad and J.P. Vacanti, Microfabrication technology for vascularized tissue engineering, Biomedical Microdevices 4, 167–175 (2002).

    Article  Google Scholar 

  • M. Shin, K. Matsuda, O. Ishii, H. Terai, M. Kaazempur-Mofrad, J.Borenstein, M. Detmar, and J.P. Vacanti, Endothelialized Networkswith a Vascular Geometry in Microfabricated Poly (dimethylsiloxane), Biomedical Microdevices 6, 269–278 (2004).

    Article  Google Scholar 

  • C. Fidkowski, M. Kaazempur-Mofrad, J. Borenstein, J.P. Vacanti, R.Langer, and Y. Wang, Endothelialized Microvasculature Based on a Biodegradable Elastomer, Tissue Engineering, 11, 302–309 (2005).

    Article  Google Scholar 

  • G.J. Wang, C.L. Chen and S.H. Hsuand Y.L. Chiang, Bio-MEMSFabricated Artificial Capillaries for Tissue Engineering, J.Microsystem Tech. 12(1/2), 120–127 (2005).

    Google Scholar 

  • C.Y. Lin Flow Visualization and Velocity Measurements in a LiquidMicrochannel, Master Thesis, Mechanical and Electro-MechanicalEngineering, National Sun Yat-Sen University, Taiwan (2004).

  • R.J. Adrian Particle-Imaging Techniques for Experimental FluidMechanics, Annual Review of Fluid Mechanics 23, 261–304 (1991).

    Google Scholar 

  • G.J. Wang, Y.F. Hsu and S.H. Hsuand R.H. Horng, JSR Photolithography Based Microvascular Fabrication and Cell Seeding, Biomedical Microdevices, 8, 17–23 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gou-Jen Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, GJ., Hsu, YF. Structure optimization of microvascular scaffolds. Biomed Microdevices 8, 51–58 (2006). https://doi.org/10.1007/s10544-006-6382-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-006-6382-x

Keywords

Navigation